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Goals for Lecture 

the key concepts to understand are the following 

•! physical network models 

•! the inference task for physical network models 



Physical Network Models 

•! the Bayes/module network learning task 

given: many measurements for each gene 

infer: dependencies among genes 

•! the physical network learning task 

given:  

•! “known” interactions among genes 

•! measurements resulting from knocking out/down 

selected genes 

infer: the subset of interactions (and perhaps their 

directions and signs) that account for the measured 

responses 

Physical Networks 
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•! model of yeast response to osmotic and calcium stress 

Figure from Gat-Viks & Shamir, Genome Research 17:358-267,  2007.  



Physical Networks 

protein-protein 

interaction 

protein-DNA 

interaction 

•! edges represent physical interactions 

Figure from Gat-Viks & Shamir, Genome Research 17:358-267,  2007.  
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•! edges in physical network models correspond to 

•! protein-protein interactions 

•! protein-DNA interactions 



Single Gene  

Knockout/Knockdown Experiments 
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•! consider an experiment in which we 

•! manipulate a gene by knocking it out (disabling it) or 

knocking it down (lowering its expression) 

•! then measure the effect of this manipulation on the 

expression levels of other genes 

Physical Network Model Example 

E 

C B 

A 

D 

e
1
 e

3
 

e
2
 e

4
 

e
5
 

•! suppose we knock out gene A 

and observe that the expression 

of gene D goes down 

B 

A 

D 

C 

A 

D 

C B 

A 

D 

•! there are three possible explanations 

for this causal relationship 



Physical Network Models 

B 

A 

•! thus for each edge we are uncertain about it’s presence  (is 

the interaction involved in the condition being analyzed) 

•! for some edges we also have uncertainty about 

•! direction 

•! sign (is the interaction activating or repressing) 
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e.g. 4 ways this interaction could be interpreted in explanations 

activating repressing 

Physical Network Models 
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to indicate edges for which we know the direction, but not the 

sign, we’ll use arrowheads like this 



Physical Network Models 
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separate binary variables represent edge 

•! presence 

•! direction 

•! sign 
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Inference in Physical Network Models 

given 

•! a set of knockout experiments in some condition 

of interest 

infer 

•! an assignment of values to the variables such 

that they provide a coherent explanation for the 

experiments 



Inference Example 
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Physical Network Models 

•! let Kp be the set of significant knockout effects 

•! for the following experiment effects, we have… 

Kp = {(A,B), (A,C), (A,D), (A,E), (B, D), (C, E)} E 
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Physical Network Models 

additional variables 

•! set of actual knockout effects 

•! measurements of gene expression in knockouts 

(think of oij as a noisy measurement of kij ) 

! 

K = kij : (i, j)" Kp{ }

  

! 

kij =

+1  if knocking out i causes j to go up

0  if knocking out i has no effect on j

-1  if knocking out i causes j to go down
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O = oij : (i, j)" Kp{ }

Physical Network Models 

additional variables 

•! path selection variables 

  

! 

" = # ija : (i, j)$ Kp sth a is a valid path btwn i and j{ }
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Inference in Physical Network Models 

•! inference task: determine assignment of  values to 

the X, S, D variables to maximize 

•! Yeang et al. use an undirected graphical model 

approach to do this inference 
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Inference in Physical Network Models 
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The Model Potentials 

•! three of the potentials relate values of variables to 

their corresponding measurements 

•! these potential functions have the general form 
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The Model Potentials 
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•! consider the potential for a single path, whose set 

of edges is denoted by Ea!

•! I(!) is an indicator function returning 1 if the given 

condition is satisfied, 0 otherwise  

are all edges present? 

are the signs of the edges 

consistent with the KO effect? 

are undirected edges 

going in the right direction? 



The Model Potentials 

•! now take into account the path selection variable 

•! because our knowledge of interactions is incomplete, 

have the potential be nonzero even when the path is 

not selected 
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The Model Potentials 

•! now specify the (soft) condition that at least on 

candidate path is selected to explain kij!
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The Model Potentials Summarized 

•! experimental noise in measurements is taken into account 

•! each knockout effect is explained by at least one path 

•! to explain an effect, the edges of a path must 

–! be “present” 

–! be going in the the right direction 

–! have their signs be consistent with the effect 

•! also the path must 

–! be shorter than some predefined upper bound 

–! end in a protein-DNA interaction 

Empirical Evaluation 
•! mating response pathway experiment 

–! 149 knockout effect pairs from 13 experiments 

–! 106 pairs in  9 experiments are connected by paths <= 5 

•! run inference procedure on all data 

–! all effects are explained by solution found 

–! only 21 effects are trivially explained by direct protein-DNA 

binding 

•! leave out some effects in a cross-validation experiment; see what 
error rate is in predicting effects 



Discussion 

•! approach looks for consistent explanations for cases in which 

we have 

•! “known” interactions among genes 

•! measurements resulting from knocking out/down 

selected genes 

•! predictive accuracy is high for a small, densely connected 

network 

•! incomplete knowledge of interactions may make approach 

less viable in larger networks  

–! only 1,091 out of 23,766 pairs are connected by valid 

paths in a genome-wide data set 


