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Goals for Lecture

the key concepts to understand are the following

the large-scale multiple-alignment task
progressive alignment

breakpoint identification

undirected graphical models

minimal spanning trees/forests




Multiple Whole Genome Alignment:
Task Definition

Given
— a set of n > 2 genomes (or other large-scale sequences)
— a method for scoring the similarity of a pair of characters

Do
— construct global alignment: identify matches between
genomes as well as various non-match features
The MLAGAN Method
[Brudno et al., Genome Research, 2003]
Given: k genomes X’ , ..., Xk, guide tree T

for each pair of genomes X', X/
anchors(i, j) = find_anchors(X, X)
align = progressive_alignment(7, anchors)

for each genome X' // iterative refinement
anchors = segments of X’ with high scores in align
align = LAGAN(align - Xi, X!, anchors) / realign X

progressive_alignment(T, anchors)
if T'is not a leaf node
align_left = progressive_alignment(T./eft)
align_right = progressive_alignment(7.right)
align = LAGAN(align_left, align_right, anchors)
return align




Progressive Alignment

(a) Guide tree

* given a guide tree relating n
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Progressive Alignment:
MLAGAN Example

suppose we’re aligning the multi-sequence X/Y with Z

1. anchors from X-Zand Y-Z
become anchors for X/Y-Z

2. overlapping anchors are

z

reweighted
3. LIS algorithm is used to Y
chain anchors
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Figure from: Brudno et al. Genome Research, 2003
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Genome Rearrangements
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e can occur within a chromosome or across chromosomes
« can have combinations of these events

Genome Rearrangement Example:
Mouse vs. Human X Chromsome

Figure from: Pevzner and Tesler. PNAS, 2003
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» each colored block represents a syntenic region of the two chromosomes

» the two panels show the two most parsimonious sets of rearrangements to
map one chromosome to the other




The Mauve Method

[Darling et al., Genome Research, 2004]

Given: k genomes X' , ..., X*

find multi-MUMs (MUMSs present in 2 or more genomes)
calculate a guide tree based on multi-MUMs

find LCBs (sequences of multi-MUMSs) to use as anchors

do recursive anchoring within and outside of LCBs

calculate a progressive alignment of each LCB using guide tree

* O wN-=

note: no LIS step!

2. Calculating the Guide Tree in Mauve

* unlike MLAGAN, Mauve calculates the guide tree
instead of taking it as an input

1. find multi-MUMs 2. calculate pairwise 3. run neighbor-joining
in sequences distances to get guide tree

S. flexneri 2/ S. flexneri 2A 24577

E. coli0157:H7 EDL933

E. coliK12 MG1655
E. coli0157:H7 VT2 Sakai

E. coliCFT073

S. enterica Typhi CT18

S. enterica Typhi Ty2 S. enterica Typhimurium

» distance between two sequences is based on fraction of
sequences shared in multi-MUMSs




3. Selecting Anchors:
Finding Local Collinear Blocks

A) The initial set of matching regions:
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e partition set of multi-MUMs,
M into collinear blocks B
find minimum-weight
collinear block(s)

remove minimum weight
block(s) if they’re
sufficiently small
until minimum-weight block is not
small enough

4. and 5. Recursive Anchoring
and Gapped Alignment

 recursive anchoring (finding finer multi-MUMs and LCBs) and
standard alignment (CLUSTALW) are used to extend LCBs




Mauve Alignment of 9 Enterobacteria
(Salmonella and E. coli)
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Mauve vs. MLAGAN:
Accuracy on Simulated Genome Data

Mauve Multi-LAGAN
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Mauve vs. LAGAN:
Accuracy on Simulated Genome
Data with Inversions

Mauve Shuffle-LAGAN
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Figure courtesy of Aaron Darling

Evolution with Horizontal Transfer




Mauve Accuracy on Simulated
Enterobacteria-like Data
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« small HT events have little effect compared to large HT events

* when scored on regions conserved in all 9 taxa, accuracy is
always > 98%

Figures courtesy of Aaron Darling

Mercator
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« orthologous segment identification: graph-based method

* breakpoint identification: refine segment endpoints with a
graphical model




Establishing Anchors Representing
Orthologous Segments

e anchors can correspond to
genes, exons or MUMS

e e.g., may do all-vs-all pairwise 2 40
comparison of genes

e construct graph with anchors as
vertices and high-similarity hits @ U
as edges (weighted by

alignment score)

Rough Orthology Map

k-partite graph with edge weights

vertices = anchors, edges = sequence similarity

Q QO




Greedy Segment Identification

e fori=kto2do

— identify repetitive anchors (depends on
number of high-scoring edges incident to each
anchor)

— find “best-hit” anchor cliques of size = i
— join colinear cliques into segments

— filter edges not consistent with significant
segments

Mercator Example

repetitive elements (black anchors) are
identified; 3-cliques (red and blue anchors)
are found

| - 1]
N segments are formed by red and blue
anchors; inconsistent edges are filtered
L1 L1 Ll

2-cliques are found and incorporated into

%52, ( BEE ff{ segments




Refining the Map:
Finding Breakpoints

e breakpoints: the positions at which genomic
rearrangements disrupt colinearity of segments
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« Mercator finds breakpoints by using inference in an
undirected graphical model

Undirected Graphical Models

* an undirected graphical model represents a probability
distribution over a set of variables using a factored
representation

1
p)=— [ wetbe)

C Ecliques

B. random variable

b assignment of values to all variables

bc assignment of values subset of variables in C

?,UC function (called a potential) representing the “compatibility”
of a given set of values

Y4 normalization term




Undirected Graphical Models

1
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C Ecliques

for the given graph:

1
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The Breakpoint Graph
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Breakpoint Undirected Graphical Model

e Mercator frames the task of finding breakpoints as an
inference task in an undirected graphical model
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Breakpoint Undirected Graphical Model
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e the possible values for a variable indicate the possible
coordinates for a breakpoint

» the potential for a clique is a function of the alignment
score for the breakpoint regions split at the breakpoints b




Breakpoint Undirected Graphical Model
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e inference task: find most probable configuration b of
breakpoints

* not tractable in this case
e graph has a high degree of connectivity

e multiple alignment is difficult

e so Mercator uses several heuristics

Making Inference Tractable in
Breakpoint Undirected Graphical Model

Ty

e assign potentials, based on pairwise alignments, to edges only

1
p) =— || wtb)

(i,])Eedges

e eliminate edges by finding a minimum spanning forest, where
edges are weighted by phylogenetic distance




Minimal Spanning Forest

minimal spanning tree: a
minimal-weight tree that
connects all vertices in a graph

minimal spanning forest. a % Q

set of MSTs, one for each
connected component @ J () ()

Breakpoint Finding Algorithm

construct breakpoint segment graph

weight edges with phylogenetic distances

find minimum spanning tree/forest

perform pairwise alignment for each edge in MST

use alignments to estimate v, ;(b,.b;)

2 o

perform max-product inference (similar to Viterbi)
to find maximizing b,




Comments on Whole-Genome
Alignment Methods

* employ common strategy
— find seed matches
— identify (sequences of) matches to anchor alignment
— fill in the rest with standard methods (e.g. DP)
 vary in what they (implicitly) assume about
— the distance of sequences being compared
— the prevalence or rearrangements
 involve a lot of heuristics
— for efficiency

— because we don’t know enough to specify a precise
objective function (e.g. how should costs should be
assigned to various rearrangements)




