Learning Sequence Motif Models Using Expectation Maximization (EM)

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2011
Mark Craven
craven@biostat.wisc.edu

Goals for Lecture

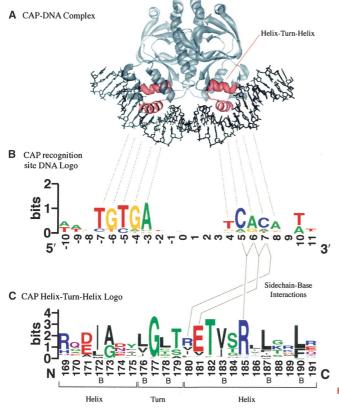
the key concepts to understand are the following

- the motif finding problem
- using EM to address the motif-finding problem
- the OOPS and ZOOPS models

Sequence Motifs

- what is a sequence motif?
 - a sequence pattern of biological significance
- examples
 - DNA sequences corresponding to protein binding sites
 - protein sequences corresponding to common functions or conserved pieces of structure

Sequence Motifs Example



CAP-binding motif model based on 59 binding sites in E.coli

helix-turn-helix motif model based on 100 aligned protein sequences

Figure from Crooks et al., Genome Research 14:1188-90, 2004.

The Motif Model Learning Task

given: a set of sequences that are thought to contain an unknown motif of interest

do:

- infer a model of the motif
- predict the locations of the motif in the given sequences

Motifs and *Profile Matrices* (a.ka. *Position Weight Matrices*)

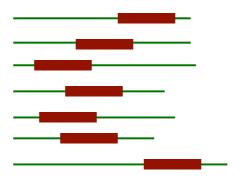
• given a set of aligned sequences, it is straightforward to construct a profile matrix characterizing a motif of interest

shared motif	\rightarrow	sequence positions							
		1	2	3	4	5	6	7	8
	Α	0.1	0.3	0.1	0.2	0.2	0.4	0.3	0.1
	С	0.5	0.2	0.1	0.1	0.6	0.1	0.2	0.7
	G	0.2	0.2	0.6	0.5	0.1	0.2	0.2	0.1
	_ т	0.2	0.3	0.2	0.2	0.1	0.3	0.3	0.1

 each element represents the probability of given character at a specified position

Motifs and Profile Matrices

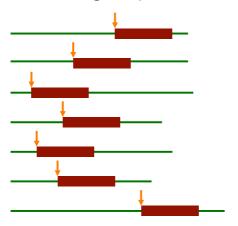
- How can we construct the profile if the sequences aren't aligned?
- In the typical case we don't know what the motif looks like.



The EM Approach

[Lawrence & Reilly, 1990; Bailey & Elkan, 1993, 1994, 1995]

- EM is a family of algorithms for learning probabilistic models in problems that involve *hidden state*
- in our problem, the hidden state is where the motif starts in each training sequence



Representing Motifs in MEME

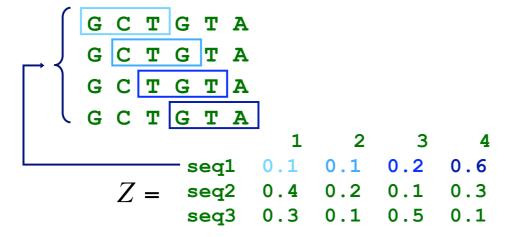
- a motif is
 - assumed to have a fixed width, W
 - represented by a matrix of probabilities: $p_{c, k}$ represents the probability of character c in column k
- also represent the "background" (i.e. sequence outside the motif): $p_{c,0}$ represents the probability of character c in the background

Representing Motifs in MEME

example: a motif model of length 3

Representing Motif Starting Positions in MEME

- the element $Z_{i,j}$ of the matrix Z represents the probability that the motif starts in position j in sequence i
- example: given DNA sequences of length 6, where *W*=3



Likelihood of a Sequence Given a Motif Starting Position

$$P(X_i \mid Z_{i,j} = 1, p) = \prod_{k=1}^{j-1} p_{c_k, 0} \prod_{k=j}^{j+W-1} p_{c_k, k-j+1} \prod_{k=j+W}^{L} p_{c_k, 0}$$
before motif motif

 X_i is the i th sequence

 $Z_{i,j}$ is 1 if motif starts at position j in sequence i

 C_k is the character at position k in sequence i

Likelihood Example

Basic EM Approach

```
given: length parameter W, training set of sequences t=0 set initial values for p^{(0)} do ++t re-estimate Z^{(t)} from p^{(t-1)} (E —step) re-estimate p^{(t)} from Z^{(t)} (M-step) until change in p^{(t)} < \varepsilon return: p^{(t)}, Z^{(t)}
```

The E-step: Estimating Z

to estimate the starting positions in Z at step t

$$Z_{i,j}^{(t)} = \frac{P(X_i \mid Z_{i,j} = 1, p^{(t-1)})P(Z_{i,j} = 1)}{\sum_{k=1}^{L-W+1} P(X_i \mid Z_{i,k} = 1, p^{(t-1)})P(Z_{i,k} = 1)}$$

this comes from Bayes' rule applied to

$$P(Z_{i,j} = 1 \mid X_i, p^{(t-1)})$$

The E-step: Estimating Z

 assume that it is equally likely that the motif will start in any position

$$Z_{i,j}^{(t)} = \frac{P(X_i \mid Z_{i,j} = 1, p^{(t-1)})P(Z_{i,j} - 1)}{\sum_{k=1}^{L-W+1} P(X_i \mid Z_{i,k} = 1, p^{(t-1)})P(Z_{i,k} - 1)}$$

Example: Estimating Z

$$X_i = \mathbf{G} \ \mathbf{C} \ \mathbf{T} \ \mathbf{G} \ \mathbf{T} \ \mathbf{A} \ \mathbf{G}$$

$$0 \quad 1 \quad 2 \quad 3$$

$$P = \begin{array}{c} \mathbf{A} \quad 0.25 \quad 0.1 \quad 0.5 \quad 0.2 \\ \mathbf{C} \quad 0.25 \quad 0.4 \quad 0.2 \quad 0.1 \\ \mathbf{G} \quad 0.25 \quad 0.3 \quad 0.1 \quad 0.6 \\ \mathbf{T} \quad 0.25 \quad 0.2 \quad 0.2 \quad 0.1 \\ Z_{i,1} = 0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \\ Z_{i,2} = 0.25 \times 0.4 \times 0.2 \times 0.6 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \\ \vdots \\ \mathbf{C}_{i,1} = \mathbf{C} \ \mathbf{C} \ \mathbf{T} \ \mathbf{G} \ \mathbf{T} \ \mathbf{A} \ \mathbf{G}$$

The M-step: Estimating *p*

• recall $p_{c,k}$ represents the probability of character c in position k; values for k=0 represent the background

$$p_{c,\,k}^{(t)} = \frac{n_{c,\,k} + d_{c,\,k}}{\sum_{b} (n_{b,\,k} + d_{b,\,k})} \qquad \text{pseudo-counts}$$

$$n_{c,\,k} = \begin{cases} \sum_{i} \sum_{j \mid X_{i,\,j+k-1} = c} \sum_{i,\,j} k > 0 \\ \sum_{i} \sum_{j \mid X_{i,\,j+k-1} = c} \sum_{j=1}^{W} n_{c,\,j} \end{cases} \qquad \text{sum over positions where } c \text{ appears}$$
 total # of c 's in data set

Example: Estimating *p*

A C **A** G C **A**

$$Z_{1,1} = 0.1, \ Z_{1,2} = 0.7, \ Z_{1,3} = 0.1, \ Z_{1,4} = 0.1$$
A G G C **A** G
$$Z_{2,1} = 0.4, \ Z_{2,2} = 0.1, \ Z_{2,3} = 0.1, \ Z_{2,4} = 0.4$$
T C **A** G T C
$$Z_{3,1} = 0.2, \ Z_{3,2} = 0.6, \ Z_{3,3} = 0.1, \ Z_{3,4} = 0.1$$

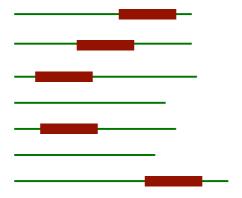
$$p_{A,1} = \frac{Z_{1,1} + Z_{1,3} + Z_{2,1} + Z_{3,3} + 1}{Z_{1,1} + Z_{1,2} \dots + Z_{3,3} + Z_{3,4} + 4}$$

$$p_{C,2} = \frac{Z_{1,1} + Z_{1,4} + Z_{2,3} + Z_{3,1} + 1}{Z_{1,1} + Z_{1,2} \dots + Z_{3,3} + Z_{3,4} + 4}$$

$$\vdots$$

The ZOOPS Model

- the approach as we've outlined it, assumes that each sequence has exactly one motif occurrence per sequence; this is the OOPS model
- the ZOOPS model assumes <u>zero or one occurrences</u> per sequence



E-step in the ZOOPS Model

- we need to consider another alternative: the *i*th sequence doesn't contain the motif
- we add another parameter (and its relative)

λ

prior probability that any position in a sequence is the start of a motif

$$\gamma = (L - W + 1)\lambda$$

 $\gamma = (L - W + 1)\lambda$ prior probability of a sequence containing a motif

E-step in the ZOOPS Model

$$Z_{i,j}^{(t)} = \frac{P(X_i \mid Z_{i,j} = 1, p^{(t-1)}) \lambda^{(t-1)}}{P(X_i \mid Q_i = 0, p^{(t-1)})(1 - \gamma^{(t-1)})} + \sum_{k=1}^{L-W+1} P(X_i \mid Z_{i,k} = 1, p^{(t-1)}) \lambda^{(t-1)}$$

• Q_i is a random variable for which Q_i = 1 if sequence X_i contains a motif, Q_i = 0 otherwise

$$P(Q_i = 1) = \sum_{j=1}^{L-W+1} Z_{i,j}^{(t-1)}$$

$$P(X_i \mid Q_i = 0, p^{(t-1)}) = \prod_{j=1}^{L} p_{c_j,0}^{(t-1)}$$

M-step in the ZOOPS Model

- update p same as before
- update γ as follows:

$$\gamma^{(t)} \equiv (L - W + 1)\lambda^{(t)} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{L - W + 1} Z_{i,j}^{(t)}$$

Extensions to the Basic EM Approach in MEME

- varying the approach (TCM model) to assume zero or more motif occurrences per sequence
- · choosing the width of the motif
- finding multiple motifs in a group of sequences
- ✓ choosing good starting points for the parameters
- ✓ using background knowledge to bias the parameters

Starting Points in MEME

- EM is susceptible to local maxima, so it's a good idea to try multiple starting points
- insight: motif must be similar to some subsequence in data set
- for every distinct subsequence of length W in the training set
 - derive an initial p matrix from this subsequence
 - run EM for 1 iteration
- choose motif model (i.e. p matrix) with highest likelihood
- run EM to convergence

Using Subsequences as Starting Points for EM

- set values matching letters in the subsequence to some value π
- set other values to $(1-\pi)/(M-1)$ where M is the length of the alphabet
- example: for the subsequence TAT with π =0.5

$$p = \begin{bmatrix} 1 & 2 & 3 \\ A & 0.17 & 0.5 & 0.17 \\ C & 0.17 & 0.17 & 0.17 \\ G & 0.17 & 0.17 & 0.17 \\ T & 0.5 & 0.17 & 0.5 \end{bmatrix}$$