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Goals for Lecture

the key concepts to understand are the following
« Bayesian networks
» the module network representation
» the module network learning procedure




Bayesian Networks
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Figure from Friedman, Science, 303:799 — 805, 2004.

Bayesian Networks

a BN is a Directed Acyclic Graph (DAG) in which
— the nodes denote random variables

— each node X has a conditional probability
distribution (CPD) representing P(X | Parents(X) )

the intuitive meaning of an arc from Xto Yis that X
directly influences Y

formally: each variable X is independent of its non-
descendants given its parents

a BN provides a factored representation of the joint
probability distribution




Representing CPDs for
Discrete Variables

« CPDs can be represented using tables or trees
 consider the following case with Boolean variables A, B, C, D
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Representing CPDs for
Continuous Variables

« we can also model the distribution of continuous
variables in Bayesian networks

» one approach: linear Gaussian models
P(X lty,.tty) ~ N(ay + Y a; X, 0°)

e X normally distributed around a mean that depends
linearly on values of its parents u;

P(X lu)




Bayes Net Structure Learning Case
Study: Friedman et al., JCB 2000

» expression levels in populations of yeast cells
« 800 genes
» 76 experimental conditions
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figure from Friedman et al., Journal of Computational Biology, 2000




Structure Search Operators
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Module Networks Motivation

» sets of variables often have the same behavior
« consider this simple stock example
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Figure from Segal et al., UAI, 2003.

* we can group variables into modules, have the
members of a module share the same CPD

Module Networks

« a module network is defined by
— a specified number of modules
— an assignment of each variable to a module
— a shared CPD for the variables in each module

« the learning task thus entails”

— determining the assignment of variables to
modules

— inducing a CPD for each module

“assuming we’re given the number of modules




Module Networks
Segal et al., Nature Genetics 34(2):166-176, 2003

« given:
— gene expression data set

» the method identifies:
— sets of genes that are co-expressed
(assignment to modules)

— a “program” that explains expression profile for
each set of genes (CPD for each module)

A Regulation Program
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suppose we have a set of (8) genes that all have in their
upstream regions the same activator/repressor binding sites




Regulation Programs as CPDs

« each of these regulation programs is actually a
CPD represented using a tree

— internal nodes are tests on continuous variables

is HAP4 > 0.1

| |

— leaves contain conditional distributions for the
genes in the module, represented by Gaussians
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Regression Tree CPD Example
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Module Network Learning Procedure

given: expression profile for each gene, set of candidate regulator genes

initialize module assignments by clustering expression profiles
repeat until convergence
structure search step:
for each module
learn a CPD tree using splits on candidate regulators

module assignment step:
repeat until convergence
for each gene
find the module that best explains it
move the gene to this module
update Gaussians at leaves

Structure Search Step

« the method for the structure search step is very similar
to the general decision-tree procedure

— splits are on genes in the candidate regulator set

— leaves represent distributions over continuous
values

+ the name for this step is somewhat misleading

— it does involve learning structure — selecting parents
for variables in the module

— it also involves learning the parameters of the
Gaussians at the leaves

— the module assignment step heavily influences the
structure




Module Assignment Step

+ Can we independently assign each variable to its
best module?

— No — might get cycles in the graph
— the score for a module depends on all of the
genes in the module

 therefore use a sequential update method (moving
one gene at a time)

— can ensure that each change is a legal
assignment that improves the score

Module Assignment Step

» suppose we have the current (partial) structure, and we
independently re-assign X, to Module i and X, to Module j
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Module Assignment Step

 in order to decide a candidate re-assignment, we need
a valid structure

score(S,A: D) = P(A)P(S1A)P(DIS,A)

S:. the dependency structure
A: the assignment of genes to modules
D: the data (gene expression observations)

« reassign gene to another module if doing so improves
score

« we can efficiently score local changes because the
scoring function is modular

score(S,A:D) = ESCOI"eMj (Pay, ,Ay, :D)
J

Empirical Evaluation

 constructed module network for 2355 yeast genes

» data from 173 microarrays
« # modules = 50 (this was specified at the outset)




The Respiration and Carbon Module
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Module Enrichment

* many modules are enriched for
— binding sites for associated regulators
— common gene annotations
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Amino acid

Global View
of Modules
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and cAMP
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* modules for common
processes often share
common
rocessing — regulators

— binding site motifs
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Comments on Module Networks

» module networks exploit the fact that many
variables (genes) are determined by the same set
of variables

« this application exploits the fact that we may have
background knowledge about the variables that
can be parents of others (the candidate regulators)

» the learning procedure is like EM, but hard
decisions are made (each gene is completely
assigned to a module)




