Module Networks

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Mark Craven
craven@biostat.wisc.edu
Spring 2011

Goals for Lecture

the key concepts to understand are the following

- Bayesian networks
- the module network representation
- · the module network learning procedure

Bayesian Networks

 $B \quad P(A,B,C,D,E) = P(A)P(B)P(C \mid A,B)P(D \mid A)P(E \mid C)$

Figure from Friedman, *Science*, 303:799 – 805, 2004.

Bayesian Networks

- a BN is a Directed Acyclic Graph (DAG) in which
 - the nodes denote random variables
 - each node X has a conditional probability distribution (CPD) representing P(X | Parents(X))
- the intuitive meaning of an arc from X to Y is that X directly influences Y
- formally: each variable X is independent of its nondescendants given its parents
- a BN provides a factored representation of the joint probability distribution

Representing CPDs for Discrete Variables

- CPDs can be represented using tables or trees
- consider the following case with Boolean variables A, B, C, D

Representing CPDs for Continuous Variables

- we can also model the distribution of continuous variables in Bayesian networks
- one approach: linear Gaussian models

$$P(X \mid u_1,...,u_k) \sim N(a_0 + \sum a_i \times u_i, \sigma^2)$$

• X normally distributed around a mean that depends linearly on values of its parents u_i

Bayes Net Structure Learning Case Study: Friedman et al., *JCB* 2000

- · expression levels in populations of yeast cells
- 800 genes
- 76 experimental conditions

Learning Bayesian Network Structure

figure from Friedman et al., Journal of Computational Biology, 2000

Structure Search Operators

BN Architectures

unconstrained acyclic network

| V1R343W | V1R334C | Tecl | Sst2 | Sst2 | Wfa2 | Stee | Kss1 | Stee | Kss1 | Fust | Barl | Aga2 | Fart | Fust | Figst | Ste12 | Figst | Figst

two-level network: parents must be from a defined set

module network

Figure from Friedman, *Science*, 303:799 – 805, 2004.

Module Networks Motivation

- sets of variables often have the same behavior
- · consider this simple stock example

Figure from Segal et al., UAI, 2003.

 we can group variables into modules, have the members of a module share the same CPD

Module Networks

- · a module network is defined by
 - a specified number of modules
 - an assignment of each variable to a module
 - a shared CPD for the variables in each module
- the learning task thus entails*
 - determining the assignment of variables to modules
 - inducing a CPD for each module

^{*}assuming we're given the number of modules

Module Networks

Segal et al., Nature Genetics 34(2):166-176, 2003

- given:
 - gene expression data set
- the method identifies:
 - sets of genes that are co-expressed (assignment to modules)
 - a "program" that explains expression profile for each set of genes (CPD for each module)

A Regulation Program

 suppose we have a set of (8) genes that all have in their upstream regions the same activator/repressor binding sites

Regulation Programs as CPDs

- each of these regulation programs is actually a CPD represented using a tree
 - internal nodes are tests on continuous variables

 leaves contain conditional distributions for the genes in the module, represented by Gaussians

Regression Tree CPD Example

Module Network Learning Procedure

given: expression profile for each gene, set of candidate regulator genes

initialize module assignments by clustering expression profiles repeat until convergence

structure search step:

for each module

learn a CPD tree using splits on candidate regulators

module assignment step:

repeat until convergence for each gene

find the module that best explains it move the gene to this module update Gaussians at leaves

Structure Search Step

- the method for the structure search step is very similar to the general decision-tree procedure
 - splits are on genes in the candidate regulator set
 - leaves represent distributions over continuous values
- the name for this step is somewhat misleading
 - it does involve learning structure selecting parents for variables in the module
 - it also involves learning the parameters of the Gaussians at the leaves
 - the module assignment step heavily influences the structure

Module Assignment Step

- Can we independently assign each variable to its best module?
 - No might get cycles in the graph
 - the score for a module depends on all of the genes in the module
- therefore use a sequential update method (moving one gene at a time)
 - can ensure that each change is a legal assignment that improves the score

Module Assignment Step

• suppose we have the current (partial) structure, and we independently re-assign X_i to Module i and X_2 to Module j

then we have a cycle

Module Assignment Step

 in order to decide a candidate re-assignment, we need a valid structure

$$score(S,A:D) = P(A)P(S \mid A)P(D \mid S,A)$$

S: the dependency structure

A: the assignment of genes to modules

D: the data (gene expression observations)

- reassign gene to another module if doing so improves score
- we can efficiently score local changes because the scoring function is modular

$$score(S, A : D) = \sum_{j} score_{M_{j}}(Pa_{M_{j}}, A_{M_{j}} : D)$$

Empirical Evaluation

- constructed module network for 2355 yeast genes
- data from 173 microarrays
- # modules = 50 (this was specified at the outset)

The Respiration and Carbon Module

Module Enrichment

- many modules are enriched for
 - binding sites for associated regulators
 - common gene annotations

Global View of Modules

- modules for common processes often share common
 - regulators
 - binding site motifs

Regulatory Relationships Inferred from Expression Data

regulator identified in module other relevant regulators regulatees identified in module regulation by transcription factors post-translational regulation

Comments on Module Networks

- module networks exploit the fact that many variables (genes) are determined by the same set of variables
- this application exploits the fact that we may have background knowledge about the variables that can be parents of others (the candidate regulators)
- the learning procedure is like EM, but <u>hard</u> decisions are made (each gene is completely assigned to a module)