Refining Metabolic Network Models in the Robot Scientist Project

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Mark Craven
craven@biostat.wisc.edu
Spring 2011

Goals for Lecture

the key concepts to understand are the following

- · auxotrophic growth experiments
- the experiment selection task
- closed-loop experimentation

The Robot Scientist Project

[King et al., Nature 2004; King et al., Science 2009]

- developed a closed-loop system that tries to refine a metabolic network model by iteratively
 - determining next experiment to run
 - executing experiment
 - reading result

Auxotrophic Growth Experiments

Does YPR060C catalyze the reaction that produces prephanate from chorismate?

- for various combinations of genetic mutants and growth media, determine whether cells were able to grow or not (or measure growth curve across multiple time points)
- a knockout mutant is auxotrophic if it cannot grow on a medium on which the wild type can grow

Auxotrophic Growth Experiments

The Original Robot Scientist System

The New Robot Scientist Lab

The New Robot Scientist Lab

The Robot Scientist in Action

videos available at

http://www.aber.ac.uk/en/cs/research/cb/projects/robotscientist/video/

The Network Reconstruction Task

pathways for synthesizing aromatic amino acids: nodes in the graph are metabolites, edges are enzymes

King et al. assume that we have pathway model but do not know which genes encode which enzymes – goal is to infer this mapping

Selecting an Experiment in ASE-Progol

- on each trial the robot scientist can select
 - a knockout strain (i.e. a yeast strain with one particular gene disabled)
 - a growth medium
- different experiments have different costs (the costs of reagents varies by orders of magnitude)
- how should the system select the next experiment to run?
- goal is to find the correct model while minimizing the cost to do so

Selecting an Experiment

• given a set of candidate hypotheses *H*, and a trial *t*, the outcome of partitions the hypotheses into two sets

Hypotheses

 hypotheses consist of assignments of genes to the reactions they catalyze

Selecting an Experiment

 given a set of candidate hypotheses H, and a set of candidate trials T, the minimum expected cost of experimentation is:

$$EC(H,T) = \min_{t \in T} \begin{bmatrix} C_t + p(t) \ EC(H_{[t]}, T - t) + \\ (1 - p(t)) \ EC(H_{[\bar{t}]}, T - t) \end{bmatrix}$$

where

 C_t is the cost of trial t p(t) is the probability that the outcome of trial t is positive $EC(\emptyset,T)=0$

$$EC(\{h\},T) = 0$$

Selecting an Experiment

 figuring out the optimal sequence of trials is equivalent to finding a minimum-cost decision tree which is NP-hard

so we need an approximation...

Selecting an Experiment

• recall that in an optimal coding scheme, the number of bits to use for message h that has probability p(h) is:

$$-\log_2(p(h))$$

 interpreting the bits of the code as outcomes of binary trials, the number of trials to eliminate all hypotheses except h is at most:

$$\left[-\log_2(p(h))\right]$$

Selecting an Experiment

 given a set of hypotheses, and an estimated probability of each being true, we can calculate the expected number of trials to identify the correct hypothesis

$$J_H = -\sum_{h \in H} p(h) \log_2(p(h))$$

this is the entropy of the distribution over hypothesis probabilities

Selecting an Experiment

King et al. use the following approximation

$$EC(H,T) \approx \min\nolimits_{t \in T} \begin{bmatrix} C_t + p(t) \; (\mathsf{mean}_{\mathsf{t}' \; \in (\mathsf{T-t})} C_{t'}) \; J_{H_{[t]}} \; + \\ (1-p(t))(\mathsf{mean}_{\mathsf{t}' \; \in (\mathsf{T-t})} C_{t'}) \; J_{H_{[\tilde{t}]}} \end{bmatrix}$$

where

$$J_{H} = -\sum_{h \in H} p(h) \lfloor \log_{2}(p(h)) \rfloor$$

and p(h) is the probability that hypothesis h is correct

The Logical Model in ASE-Progol

- get p(h) by using logical inference to determine how well h "compresses" (explains) the observations so far
- get p(t) by summing p(h) for h that predict a positive result
- determine prediction for each hypothesis by doing logical inference on the pathway model

Will ΔYPR060C + prephenate grow given our hypothesis about YPR060C?

The ASE-Progol Main Loop

```
while |H| > 1
```

for each candidate experiment t // may only be a sample for each candidate hypothesis h in H // may only be a sample determine h's prediction for t

determine expected experimentation cost if we run $\it t$ run trial that leads to min estimated experimentation cost

Active Experimentation with the Robot Scientist

Experimental Evaluation (Nature 2004)

- try to reconstruct pathway model for synthesis of aromatic amino acids
- determine which genes are associated with which enzymatic reactions in the model

Experimental Evaluation (Nature 2004)

- compare three trial selection strategies
 - ASE
 - naïve: select the cheapest experiment not yet done
 - random
- evaluate accuracy of an approach by
 - considering predictions made for all single-metabolite and double-metabolite experiments
 - averaged over all hypotheses not eliminated

Experimental Evaluation (Nature 2004)

Figure from King et al., Nature 427:247-252, 2004.

Experimental Evaluation (Nature 2004)

VS.

"In initial trials, using nine graduate computer scientists and biologists, we found that there was no significant difference between the robot and the *best* human performance in terms of the number of iterations required to achieve a given level of accuracy."

Experimental Evaluation (Science 2009)

- identify genes encoding orphan enzymes (we know reaction occurs, we don't know which gene carries it out)
- · scale of experiment
 - logical model of metabolism encodes ~1200 genes,
 ~800 metabolites
 - system made 6,657,024 optical-density measurements (each quantifies growth at a particular time point in a particular culture)
- investigated 20 hypotheses about 13 orphan enzymes
 - 12 hypotheses with no previous evidence were established with p < 0.05
 - confirmed with direct experimental methods

Experimental Evaluation (Science 2009)

Orphan enzyme	Hypothesized gene	Prob.	Acc.	No.	Existing annotation	Dry	Wet
Glucosamine-6-phosphate deaminase (3.5.99.6)	YHR163W (SOL3)	<10 ⁻⁴	97	8	6-Phosphogluconolactonase, ida	-	-
Glutaminase (3.5.1.2)	YIL033C (BCY1)	<10 ⁻⁴	92	11	Cyclic adenosine 3',5'- monophosphate (cAMP)— dependent protein kinase inhibitor, ida	X	-
L-Threonine 3- dehydrogenase (1.1.1.103)	YDL168W (SFA1)	<10 ⁻⁴	83	6	Alcohol dehydrogenase, ida	-	-
Purine-nucleoside phosphorylase (2.4.2.1)	YLR209C (PNP1)	<10 ⁻⁴	82	11	Purine-nucleoside phosphorylase, ida	✓	-
2-Aminoadipate transaminase (2.6.1.39)	YGL202W (ARO8)	<10 ⁻⁴	80	3	Aromatic—amino acid transaminase, ida	✓	✓
5,10-Methenyltetrahydrofolate synthetase (6.3.3.2)	YER183C (FAU1)	<10 ⁻⁴	80	4	5,10 Formyltetrahydrofolate cyclo-ligase, ida	✓	-
Glucosamine-6-phosphate deaminase (3.5.99.6)	YNR034W (SOL1)	<10 ⁻⁴	79	2	Possible role in tRNA export	-	-
Pyridoxal kinase (2.7.1.35)	YPR121W (THI22)	<10 ⁻⁴	78	1	Phosphomethylpyrimidine kinase, iss	-	-
Mannitol-1-phosphate 5-dehydrogenase (1.1.1.17)	YNR073C	<10 ⁻⁴	78	6	Putative mannitol dehydrogenase, iss	-	-
1-Acylglycerol-3-phosphate O-acyltransferase (2.3.1.51)	YDL052C (SLC1)	0.0001	80	6	1-Acylglycerol-3-phosphate O-acyltransferase ida	✓	-

•