Alignment of Long Sequences

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2011
Mark Craven
craven@pbiostat.wisc.edu

Goals for Lecture

the key concepts to understand are the following

* how large-scale alignment differs from the simple case
 the canonical three step approach of large-scale aligners
* using suffix trees to find MUMSs (alignment seeds)
 using tries and threaded tries to find alignment seeds

« constrained dynamic programming to align between/
around anchors

» using sparse DP to find a chain of local alignments

Pairwise Large-Scale Alignment:
Task Definition

Given
— a pair of large-scale sequences (e.g. chromosomes)

— a method for scoring the similarity of a pair of
characters

Do

— construct global alignment: identify matches between
sequences as well as various non-match features

Large Scale Alignment Example:
Mouse Chr6 vs. Human Chr12

250000

%

150000

100000
°

Position in AC002397, mouse chromosome 6

:

o @ of

o
#’Ooa

0 50000 100000 150000 200000 250000
Position in U47924, human chromosome 12

Why the Problem is Challenging

« sequences too big to make O(n?) dynamic-

programming methods practical

* long sequences are less likely to be colinear because

of rearrangements

— initially we’ll assume colinearity
— we’'ll consider rearrangements in next lecture

. SN
\ AN
N
\ NN

General Strategy

Figure from: Brudno et al. Genome Research, 2003

perform pattern
matching to find
seeds for global
alignment

AN N N
AN
L N

find a good chain of 3.
anchors

fill in remainder
with standard but
constrained
alignment method

Comparison of Large-Scale
Alignment Methods

Method Pattern matching Chaining

suffix tree - MUMSs

LIS variant

suffix tree - exact & | Smith-Waterman
wobble matches variant

k-mer trie, inexact

matches sparse DP

The MUMmer System

Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B

1. find all maximal, unique, matching subsequences
(MUMSs)

2. extract the longest possible set of matches that
occur in the same order in both genomes

3. close the gaps

Step 1: Finding Seeds in MUMmer

* maximal unique match (MUM):
— occurs exactly once in both genomes A and B
— not contained in any longer MUM

Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta
Genome B: gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag

mismatches

» key insight: a significantly long MUM is certain to be
part of the global alignment

Suffix Trees

* substring problem:
— given text S of length m
— preprocess S in O(m) time

— such that, given query string Q of length #, find
occurrence (if any) of Q in S'in O(n) time

» suffix trees solve this problem, and others

key property

Suffix Tree Definition

a suffix tree T for a string S of length m is tree with
the following properties:

rooted and directed
m leaves, labeled 1 to m
each edge labeled by a substring of §

concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by Si..»)
each internal non-root node has at least two
children

edges out of a node must begin with different
characters

S =

Suffixes

‘panana$”

suffixes of S

$

a$

na$
ana$
nana$
anana$
banana$

Suffix Tree Example

e S ="anana%”

e add ‘$’ toend so that suffix
tree exists (no suffix is a
prefix of another suffix)

Solving the Substring Problem

« assume we have suffix tree T
. FindMatch(Q, T):

— follow (unique) path down from root of T
according to characters in Q

— if all of Q is found to be a prefix of such a path
return label of some leaf below this path
— else, return no match found

Solving the Substring Problem

Q = nan Q = anab

return 3 return no match found

MUMs and Generalized Suffix Trees

* build one suffix tree for both genomes A and B
* label each leaf node with genome it represents

Genome A: ccacg# each internal node represents
a repeated sequence

Genome B: cct$

Al B, 1 '\ each leaf represents a suffix
and its position in sequence

MUMs and Suffix Trees

* unique match: internal node with 2 children, leaf
nodes from different genomes

» but these matches are not necessarily maximal

Genome A: ccacg#

Genome B: cct$

A3 B, 3

represents unique match

MUMs and Suffix Trees

* to identify maximal matches, can compare suffixes
following unique match nodes

Genome A: acat#
Genome B: acaa$

a ca G
A, 4
$ a$ ca t# t# a$
B) 4 B) 3 A, 3 A, 2 B, 2
t# a$ the suffixes following
these two match nodes
Al B, 1 are the same; the left one

represents a longer match
(aca)

Using Suffix Trees to Find MUMSs

* O(n) time to construct suffix tree for both sequences
(of lengths < n)

 O(n) time to find MUMs - one scan of the tree (which
is O(n) in size)

e O(n) possible MUMs in contrast to O(n?) possible
exact matches

e main parameter of approach: length of shortest MUM
that should be identified (20 — 50 bases)

Step 2: Chaining in MUMmer

« sort MUMs according to position in genome A

 solve variation of Longest Increasing Subsequence
(LIS) problem to find sequences in ascending order in
both genomes

Genome A:] 2 3 4 2 6 7
Genome B: 3 2: 4: 6 é_} 5

1

Genome A:] 2\\ _7_/ 4 76— 7

Genome B:

1 2 4 6 7

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Finding Longest Subsequence

 unlike ordinary LIS problems, MUMmer takes into
account

— lengths of sequences represented by MUMs
— overlaps
* requires O(klogk) time where k is number of MUMs

Types of Gaps in a MUMmer
Alignment

1. SNP: exactly one base (indicated by =) differs between the two sequences. It is
surrounded by exact-match sequence.

Genome A: cgtcatgggegttegtegttg
Genome B: cgtcatgggcattcgtegttg

2. Insertion: a sequence that occurs in one genome but not the other.

Genome A: cggggtaaccge.................. cctggteggg
Genome B: cggggtaaccgegttgeteggggtaaccgeectggtegeg

AAAAAAAAAAAAAAAAAA

3. Highly polymorphic region: many mutations in a short region.

Genome A: ccgectegeetgg.getggegeeegetce
Genome B: ccgcctegecagttgaccgegeccgetce

4. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of
the repeat in Genome B is imperfect, containing one mismatch to the other three
identical copies.

Genome A: c¢TGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc
Genome B: aTGGGTGGGGCgACGTggggggeggTGGGTGGGACAACGTa

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Step 3: Close the Gaps

« SNPs:
— between MUMs: trivial to detect
— otherwise: handle like repeats

* inserts

— transpositions (subsequences that were deleted
from one location and inserted elsewhere): look for
out-of-sequence MUMs

— simple insertions: trivial to detect

Step 3: Close the Gaps

* polymorphic regions

— short ones: align them with dynamic programming
method

— long ones: call MUMmer recursively w/ reduced
min MUM length

* repeats
— detected by overlapping MUMs

Genome A: |uniqueAAGGAAGGAAGGsequence|
Genome B: [uniquelAAGGAAGG] .. . sequence)|
i i |
Position: 0 10 20

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

The LAGAN Method

Brudno et al., Genome Research, 2003

Given: genomes A and B
anchors = find_anchors(A, B)
step 3: finish global alignment with DP constrained by anchors

find_anchors(A, B)
step 1: find local alignments by matching, chaining k-mer seeds
step 2: anchors = highest-weight sequence of local alignments
for each pair of adjacent anchors a,, a, in anchors
if a,, a, are more than d bases apart
A’, B' = sequences between a,, a,
sub-anchors = find_anchors(A’, B’)
insert sub-anchors between a,, a, in anchors
return anchors

Step 1a: Finding Seeds in LAGAN

* degenerate k-mers: matching k-long sequences with
a small number mismatches allowed

» by default, LAGAN uses 10-mers and allows 1
mismatch

cacg|cgcgctacat|acct
acta|cgcggtacat/cgta

Finding Seeds in LAGAN

« example: a trie to represent all 3-mers of the sequence
gaaccgacct

2 3,7 4 8 5 1 6

* one sequence is used to build the trie

 the other sequence (the query) is “walked” through to
find matching k-mers

Allowing Degenerate Matches

« suppose we're allowing 1 base to mismatch in looking
for matches to the 3-mer acc; need to explore green

LAGAN Uses Threaded Tries

* in a threaded trie, each leaf for word Wy... W, has a back

pointer to the node for w,...w,

a c g
() O Q
a C g a
o () () () (O
c C g t a a c
2 3,7 4 8 5 1 6

Traversing a Threaded Trie

» consider traversing the trie to find 3-mer matches for the
query sequence: accgt

 usually requires following only two pointers to match against
the next k-mer, instead of traversing tree from root for each

Step 1b: Chaining Seeds in LAGAN

xR st
istance
s cutoff seed

A o query
~ = :] / >

can chain seeds s, and s, if

— the indices of s, > indices
of s, (for both sequences)

— s, and s, are near each
other

keep track of seeds in the
“search box” as the query
sequence is processed

\
1 N
H N N
N RS
| N N
' . N
N N
[. ~
\ N
N N

1 ~ ~
1 ~ N

! N ~
! [T ~
1 H N ~
' N N

1 ~ \
1 1 ~ ~
f N N

1 N N
1 Il N ~
1 N

! N N
1 1 ~ ~
1 ' S
1 ~
i 1 N

~

1 : X

1 hY

Search location Range of
Figure from: Brudno et al. BMC Bioinformatics, 2003 bDOX in query search

database

Step 2: Chaining in LAGAN

* use sparse dynamic programming to chain local
alignments

The Problem: Find a Chain of Local Alignments

X

N\

“ X

N\
N

Slide from Serafim Batzoglou, Stanford University

(xy) = (X\y)
requires
X <x
y<y
Each local alignment has a

weight

FIND the chain with highest
total weight

Sparse DP for rectangle chaining

rectangles
y-coordinates of rectangle j

weight of rectangle j

optimal score of chain ending in j

list of triplets (I, V(j), j)

L is sorted by |;: smallest (North) to largest (South) value

L is implemented as a balanced binary tree

Slide from Serafim Batzoglou, Stanford University

(XX]
0000
s
Sparse DP for rectangle chaining B
Main idea:
+ Sweep through x- i i i i
coordinates ! ! ! |
+ To the right of b, anything i | V(Eb) i
chainable to a is chainable | V(a) " |
tob l i l l
« Therefore, if V(b) > V(a), : : : '
rectangle a is “useless” for ! ! ! !
subsequent chaining | | | |
- InL, keep rectangles j : : l |
sorted with increasing |- : : : |
coordinates = ! ! ! !
sorted with increasing V(j) ! ! ! !
score . | | |
Slide from Serafim Batzoglou, Stanford University
(XX]
0000
a2
Sparse DP for rectangle chaining e

Go through rectangle x-coordinates, from lowest to highest:

1. When on the leftmost end of rectangle i: j

j: rectangle in L, with largest |, < h;

V(i) = w(i) + V() k

2. When on the rightmost end of i:

k: rectangle in L, with largest |, < |,
If V(i) > V(k):
INSERT (I, V(i),i)inL
REMOVE all (l;, V(j), j) with V(j) < V(i) & |; = |;

Slide from Serafim Batzoglou, Stanford University

(X X J
0000
o000
o0 0
Example :
PN b
B R al|b|c|d
5| I v
S B T e 5011 | 8 [12]13
SRR R EEEEEE
of bt .
10I | II.II 1 1
apo SR TN ! 9 |15 |16
e R L [
| vy 5 |11 11213
R AR A INDNE
y

1. When on the leftmost end of rectangle i:
J: rectangle in L, with largest ; <h;
V(i) =w(i) + V()

2. ‘When on the rightmost end of i:
k: rectangle in L, with largest 1, < 1;
If V(i) > V(k):
INSERT (I, V(i),i)in L
REMOVE all (I;, V(j), j) with V() = V(i) & |, = |;

Slide from Serafim Batzoglou, Stanford University

Time Analysis

1. Sorting the x-coords takes O(N log N)
2. Going through x-coords: N steps

3. Each of N steps requires O(log N) time:

Searching L takes log N

Inserting to L takes log N

All deletions are consecutive, so log N per deletion

Each element is deleted at most once: N log N for all deletions

Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in
a balanced binary search tree

Slide from Serafim Batzoglou, Stanford University

Constrained Dynamic
Programming

1

« if we know that the it"
element in one sequence
must align with the jth
element in the other, we

can ignore two rectangles /
in the DP matrix

Step 3: Computing the Global

Alignment in LAGAN

i-r 1 1tr

« given an anchor that
starts at (i, j)) and ends 7/
at (i’,;°), LAGAN limits . 0
the DP to the \T
unshaded regions i+

e thus anchors are
somewhat flexible

" 1”141

Figure from: Brudno et al. Genome Research, 2003

yr

2

ytr

Step 3. Computing the Glob
lignment in LAGAN

1-r 1 1tr

al

" 1”141

Figures from: Brudno et al. Genome Research, 2003

Example Alignment:
E. Coli O157:H7 vs. E. coli K-12

L
3 3
3 3
2 3
LA |
L §
‘.T 5

E. colf

arbess

{
z E
wyias FTS t =

: i CpasM
O157:H7 % —}‘ -sv- 25 st
= B S e i

Vetwe, g

O-dreipas

[C—

Figure from: Perna et al. Nature, 2001

