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Goals for Lecture 

the key concepts to understand are the following 

•! how large-scale alignment differs from the simple case 

•! the canonical three step approach of large-scale aligners 

•! using suffix trees to find MUMs (alignment seeds) 

•! using tries and threaded tries to find alignment seeds 

•! constrained dynamic programming to align between/
around anchors 

•! using sparse DP to find a chain of local alignments 



Pairwise Large-Scale Alignment: 
Task Definition 

Given 

–! a pair of large-scale sequences (e.g. chromosomes) 

–! a method for scoring the similarity of a pair of 
characters 

Do 

–! construct global alignment: identify matches between 
sequences as well as various non-match features 

Large Scale Alignment Example: 
Mouse Chr6 vs. Human Chr12 



Why the Problem is Challenging 

•! sequences too big to make O(n2) dynamic-
programming methods practical 

•! long sequences are less likely to be colinear because 
of rearrangements 

–! initially we’ll assume colinearity 

–! we’ll consider rearrangements in next lecture 

General Strategy 

Figure from: Brudno et al.  Genome Research, 2003 

1.! perform pattern 
matching to find 
seeds for global 
alignment 

2.! find a good chain of 
anchors 

3.! fill in remainder 
with standard but 
constrained 
alignment method 



Comparison of Large-Scale 
Alignment Methods 

Method Pattern matching Chaining 

MUMmer suffix tree - MUMs LIS variant 

AVID 
suffix tree - exact & 

wobble matches 
Smith-Waterman 

variant 

LAGAN 
k-mer trie, inexact 

matches  
sparse DP 

The MUMmer System 
Delcher et al., Nucleic Acids Research, 1999 

Given: genomes A and B!

1.! find all maximal, unique, matching subsequences 
(MUMs) 

2.! extract the longest possible set of matches that 
occur in the same order in both genomes 

3.! close the gaps 



Step 1: Finding Seeds in MUMmer 

•! maximal unique match (MUM): 

–! occurs exactly once in both genomes A and B!

–! not contained in any longer MUM 

•! key insight: a significantly long MUM is certain to be 
part of the global alignment 

mismatches 

Suffix Trees 

•! substring problem: 

–! given text S of length m 

–! preprocess S in O(m) time 

–! such that, given query string Q of length n, find 
occurrence (if any) of Q in S in O(n) time 

•! suffix trees solve this problem, and others 



Suffix Tree Definition 

•! a suffix tree T for a string S of length m is tree with 
the following properties: 

–! rooted and directed 

–! m leaves, labeled 1 to m 

–! each edge labeled by a substring of S 

–! concatenation of edge labels on path from root 
to leaf i is suffix i of S (we will denote this by Si...m) 

–! each internal non-root node has at least two 
children 

–! edges out of a node must begin with different 
characters 

key property!

Suffixes 

S = “banana$” 

suffixes of S!

$ 

a$ 

na$ 

ana$ 

nana$ 

anana$ 

banana$ 



Suffix Tree Example 

•! S = “banana$” 

•! add ‘$’ to end  so that suffix 
tree exists (no suffix is a 
prefix of another suffix) 
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Solving the Substring Problem 

•! assume we have suffix tree T 

•! FindMatch(Q, T): 

–! follow (unique) path down from root of T 

according to characters in Q 

–! if all of Q is found to be a prefix of such a path 

 return label of some leaf below this path 

–! else, return no match found 



Solving the Substring Problem 
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Q = nan!

return 3 
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Q = anab!

STOP!

return no match found 

MUMs and Generalized Suffix Trees 
•! build one suffix tree for both genomes A and B!

•! label each leaf node with genome it represents 

acg# c g# t$ 

acg# c g# t$ 

acg# t$ 

A, 3 

A, 2 

A, 1 

A, 4 

B, 1 

B, 2 

B, 3 A, 5 

Genome A:  ccacg# 

Genome B:  cct$ 

each internal node represents  
a repeated sequence 

each leaf represents a suffix 
and its position in sequence 



MUMs and Suffix Trees 
•! unique match: internal node with 2 children, leaf 

nodes from different genomes 

•! but these matches are not necessarily maximal 

acg# c g# t$ 

acg# c g# t$ 

acg# t$ 

A, 3 

A, 2 

A, 1 

A, 4 

B, 1 

B, 2 

B, 3 A, 5 

Genome A:  ccacg# 

Genome B:  cct$ 

represents unique match 

MUMs and Suffix Trees 

•! to identify maximal matches, can compare suffixes 
following unique match nodes  

Genome A:  acat# 
Genome B:  acaa$ 

a ca 
t# 

ca t# t# 

a$ t# 

A, 2 A, 3 

A, 4 

A, 1 

B, 4 

$ a$ 

B, 3 B, 2 

a$ 

B, 1 

the suffixes following 
these two match nodes  
are the same; the left one 
represents a longer match 
(aca) 



Using Suffix Trees to Find MUMs 

•! O(n) time to construct suffix tree for both sequences 
(of lengths ! n) 

•! O(n) time to find MUMs - one scan of the tree (which 
is O(n) in size) 

•! O(n) possible MUMs in contrast to O(n2) possible 
exact matches 

•! main parameter of approach: length of shortest MUM 
that should be identified (20 – 50 bases) 

Step 2: Chaining in MUMmer 

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999 

•! sort MUMs according to position in genome A!

•! solve variation of Longest Increasing Subsequence 
(LIS) problem to find sequences in ascending order in 
both genomes 



Finding Longest Subsequence 

•! unlike ordinary LIS problems, MUMmer takes into 
account 

–! lengths of sequences represented by MUMs 

–! overlaps 

•! requires                  time where k is number of MUMs )log( kkO

Types of Gaps in a MUMmer 
Alignment 

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999 



Step 3: Close the Gaps 

•! SNPs: 

–! between MUMs: trivial to detect 

–! otherwise: handle like repeats 

•! inserts 

–! transpositions (subsequences that were deleted 
from one location and inserted elsewhere): look for 
out-of-sequence MUMs 

–! simple insertions: trivial to detect 

Step 3: Close the Gaps 

•! polymorphic regions 

–! short ones: align them with dynamic programming 
method 

–! long ones: call MUMmer recursively w/ reduced 
min MUM length 

•! repeats 

–! detected by overlapping MUMs 

Figure from: Delcher et al.  Nucleic Acids Research 27, 1999 



The LAGAN Method 
Brudno et al., Genome Research, 2003 

Given: genomes A and B 

anchors = find_anchors!A, B"#
$%&'#(: finish global alignment with DP constrained by anchors 

find_anchors!)*#+"#
  $%&'#,: find local alignments by matching, chaining k-mer seeds 
  $%&'#-: anchors =  highest-weight sequence of local alignments 
 for each pair of adjacent anchors a1, a2 in anchors 

 if a1, a2 are more than d  bases apart 
   A’, B’ = sequences between a1, a2  
  sub-anchors = find_anchors( A’, B’ ) 
  insert sub-anchors between a1, a2  in anchors 

return anchors 

Step 1a: Finding Seeds in LAGAN 

•! degenerate k-mers: matching k-long sequences with 
a small number mismatches allowed  

•! by default, LAGAN uses 10-mers and allows 1 
mismatch 

cacg cgcgctacat acct 

acta cgcggtacat cgta 



Finding Seeds in LAGAN 
•! example: a trie to represent all 3-mers of the sequence 

gaaccgacct 

a c g 

3, 7 2 4 5 8 1 6 

a c c g a 

c c g t a a c 

•! one sequence is used to build the trie  

•! the other sequence (the query) is “walked” through to 
find matching k-mers  

Allowing Degenerate Matches 
•! suppose we’re  allowing 1 base to mismatch in looking 

for matches to the 3-mer acc; need to explore green 
nodes 

a c g 

3, 7 2 4 5 8 1 6 

a c c g a 

c c g t a a c 



LAGAN Uses Threaded Tries 
•! in a threaded trie, each leaf for word w1...wp has a back 

pointer to the node for w2...wp 

a c g 

3, 7 2 4 5 8 1 6 

a c c g a 

c c g t a a c 

Traversing a Threaded Trie 
•! consider traversing the trie to find 3-mer matches for the 

query sequence: accgt
 

a c g 

3, 7 2 4 5 8 1 6 

a c c g a 

c c g t a a c 

•! usually requires following only two pointers to match against 
the next k-mer,  instead of traversing tree from root for each 



Step 1b: Chaining Seeds in LAGAN 

•! can chain seeds s1 and s2 if 

–! the indices of s1 > indices  
of s2 (for both sequences) 

–! s1 and s2 are near each 
other 

•! keep track of seeds in the 
“search box” as the query 
sequence is processed 

Figure from: Brudno et al.  BMC Bioinformatics, 2003 

Step 2: Chaining in LAGAN 

•! use sparse dynamic programming to chain local 
alignments 



Slide from Serafim Batzoglou, Stanford University 

The Problem: Find a Chain of Local Alignments 

!.*/"#!#!.0*/0"#

1&2341&$#

.#5#.0#

/#5#/0#

6789#:;87:#7:4<=>&=%#97$#7#

?&4<9%#

@ABC#%9&#8974=#?4%9#94<9&$%#

%;%7:#?&4<9%#

Slide from Serafim Batzoglou, Stanford University 

Sparse DP for rectangle chaining 

•! 1,…, N:  rectangles 

•! (hj, lj):  y-coordinates of rectangle j 

•! w(j):  weight of rectangle j 

•! V(j):   optimal score of chain ending in j 

•! L:   list of triplets (lj, V(j), j) 

!! L is sorted by lj: smallest (North) to largest (South) value 

!! L is implemented as a balanced binary tree 

/#

9#

:#



Slide from Serafim Batzoglou, Stanford University 

Sparse DP for rectangle chaining 

Main idea:  

•! Sweep through x-
coordinates 

•! To the right of b, anything 
chainable to a is chainable 
to b 

•! Therefore, if V(b) > V(a), 
rectangle a is “useless” for 
subsequent chaining 

•! In L, keep rectangles j 
sorted with increasing lj-
coordinates "  
 sorted with increasing V(j) 
score 

V(b) 
V(a) 

Slide from Serafim Batzoglou, Stanford University 

Sparse DP for rectangle chaining 

Go through rectangle x-coordinates, from lowest to highest: 

1.! When on the leftmost end of rectangle i: 

a.! j: rectangle in L, with largest lj < hi 

b.! V(i) = w(i) + V(j) 

2.! When on the rightmost end of i: 

a.! k: rectangle in L, with largest lk # li 

b.! If V(i) > V(k): 

i.! INSERT  (li, V(i), i) in L 

ii.! REMOVE  all (lj, V(j), j) with V(j) # V(i) & lj $ li 

i 

j 

k 



Slide from Serafim Batzoglou, Stanford University 

Example 

x 

y 

a: 5 

c: 3 

b: 6 

d: 4 

e: 2 

2 

5 
6 

9 
10 

11 
12 

14 
15 
16 

1.! When on the leftmost end of rectangle i: 

a.! j: rectangle in L, with largest lj < hi 

b.! V(i) = w(i) + V(j) 

2.! When on the rightmost end of i: 
a.! k: rectangle in L, with largest lk # li 

b.! If V(i) > V(k): 

i.! INSERT     (li, V(i), i) in L 

ii.! REMOVE   all (lj, V(j), j) with V(j) # V(i) & lj $ li 

a b c d e 
V 

5 

L 

li 

V(i) 

i 

5 

5 

a 

8 

11 

8 

c 

11 12 

9 

11 

b 

15 

12 

d 

13 

16 

13 

3 

Slide from Serafim Batzoglou, Stanford University 

Time Analysis 

1.! Sorting the x-coords takes O(N log N) 

2.! Going through x-coords: N steps 

3.! Each of N steps requires O(log N) time: 

•! Searching L takes log N 

•! Inserting to L takes log N 

•! All deletions are consecutive, so log N per deletion 

•! Each element is deleted at most once: N log N for all deletions 

•! Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in 
a balanced binary search tree 



Constrained Dynamic 
Programming 

•! if we know that the ith 
element in one sequence 
must align with the jth 
element in the other, we 
can ignore two rectangles 
in the DP matrix 

i 

j 

Step 3: Computing the Global 
Alignment in LAGAN 

Figure from: Brudno et al.  Genome Research, 2003 

•! given an anchor that 
starts at (i, j) and ends 
at (i’, j’), LAGAN limits 
the DP to the 
unshaded regions 

•! thus anchors are 
somewhat flexible 



Step 3: Computing the Global 
Alignment in LAGAN 

Figures from: Brudno et al.  Genome Research, 2003 

Figure from: Perna et al.  Nature, 2001 

Example Alignment:  
E. Coli O157:H7 vs. E. coli K-12 


