
Alignment of Long Sequences

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2011

Mark Craven

craven@biostat.wisc.edu

Goals for Lecture

the key concepts to understand are the following

•! how large-scale alignment differs from the simple case

•! the canonical three step approach of large-scale aligners

•! using suffix trees to find MUMs (alignment seeds)

•! using tries and threaded tries to find alignment seeds

•! constrained dynamic programming to align between/
around anchors

•! using sparse DP to find a chain of local alignments

Pairwise Large-Scale Alignment:
Task Definition

Given

–! a pair of large-scale sequences (e.g. chromosomes)

–! a method for scoring the similarity of a pair of
characters

Do

–! construct global alignment: identify matches between
sequences as well as various non-match features

Large Scale Alignment Example:
Mouse Chr6 vs. Human Chr12

Why the Problem is Challenging

•! sequences too big to make O(n2) dynamic-
programming methods practical

•! long sequences are less likely to be colinear because
of rearrangements

–! initially we’ll assume colinearity

–! we’ll consider rearrangements in next lecture

General Strategy

Figure from: Brudno et al. Genome Research, 2003

1.! perform pattern
matching to find
seeds for global
alignment

2.! find a good chain of
anchors

3.! fill in remainder
with standard but
constrained
alignment method

Comparison of Large-Scale
Alignment Methods

Method Pattern matching Chaining

MUMmer suffix tree - MUMs LIS variant

AVID
suffix tree - exact &

wobble matches
Smith-Waterman

variant

LAGAN
k-mer trie, inexact

matches
sparse DP

The MUMmer System
Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B!

1.! find all maximal, unique, matching subsequences
(MUMs)

2.! extract the longest possible set of matches that
occur in the same order in both genomes

3.! close the gaps

Step 1: Finding Seeds in MUMmer

•! maximal unique match (MUM):

–! occurs exactly once in both genomes A and B!

–! not contained in any longer MUM

•! key insight: a significantly long MUM is certain to be
part of the global alignment

mismatches

Suffix Trees

•! substring problem:

–! given text S of length m

–! preprocess S in O(m) time

–! such that, given query string Q of length n, find
occurrence (if any) of Q in S in O(n) time

•! suffix trees solve this problem, and others

Suffix Tree Definition

•! a suffix tree T for a string S of length m is tree with
the following properties:

–! rooted and directed

–! m leaves, labeled 1 to m

–! each edge labeled by a substring of S

–! concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by Si...m)

–! each internal non-root node has at least two
children

–! edges out of a node must begin with different
characters

key property!

Suffixes

S = “banana$”

suffixes of S!

$

a$

na$

ana$

nana$

anana$

banana$

Suffix Tree Example

•! S = “banana$”

•! add ‘$’ to end so that suffix
tree exists (no suffix is a
prefix of another suffix)

$!

1

b!
a!
n!
a!
n!
a!
$!

n!
a!

n!
a! $!$!

a!

n!

n!
a!

$! $!

2 3 4 5

a!

$!

6

7

Solving the Substring Problem

•! assume we have suffix tree T

•! FindMatch(Q, T):

–! follow (unique) path down from root of T

according to characters in Q

–! if all of Q is found to be a prefix of such a path

 return label of some leaf below this path

–! else, return no match found

Solving the Substring Problem

$!

1

b!
a!
n!
a!
n!
a!
$!

n!
a!

n!
a! $!$!

a!

n!

n!
a!

$! $!

2 3 4 5

a!

$!

6

7

Q = nan!

return 3

$!

1

b!
a!
n!
a!
n!
a!
$!

n!
a!

n!
a!

$!$!

a!

n!

n!
a!

$! $!

2
3 4 5

a!

$!

6

7

Q = anab!

STOP!

return no match found

MUMs and Generalized Suffix Trees
•! build one suffix tree for both genomes A and B!

•! label each leaf node with genome it represents

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3 A, 5

Genome A: ccacg#

Genome B: cct$

each internal node represents
a repeated sequence

each leaf represents a suffix
and its position in sequence

MUMs and Suffix Trees
•! unique match: internal node with 2 children, leaf

nodes from different genomes

•! but these matches are not necessarily maximal

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3 A, 5

Genome A: ccacg#

Genome B: cct$

represents unique match

MUMs and Suffix Trees

•! to identify maximal matches, can compare suffixes
following unique match nodes

Genome A: acat#
Genome B: acaa$

a ca
t#

ca t# t#

a$ t#

A, 2 A, 3

A, 4

A, 1

B, 4

$ a$

B, 3 B, 2

a$

B, 1

the suffixes following
these two match nodes
are the same; the left one
represents a longer match
(aca)

Using Suffix Trees to Find MUMs

•! O(n) time to construct suffix tree for both sequences
(of lengths ! n)

•! O(n) time to find MUMs - one scan of the tree (which
is O(n) in size)

•! O(n) possible MUMs in contrast to O(n2) possible
exact matches

•! main parameter of approach: length of shortest MUM
that should be identified (20 – 50 bases)

Step 2: Chaining in MUMmer

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

•! sort MUMs according to position in genome A!

•! solve variation of Longest Increasing Subsequence
(LIS) problem to find sequences in ascending order in
both genomes

Finding Longest Subsequence

•! unlike ordinary LIS problems, MUMmer takes into
account

–! lengths of sequences represented by MUMs

–! overlaps

•! requires time where k is number of MUMs)log(kkO

Types of Gaps in a MUMmer
Alignment

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Step 3: Close the Gaps

•! SNPs:

–! between MUMs: trivial to detect

–! otherwise: handle like repeats

•! inserts

–! transpositions (subsequences that were deleted
from one location and inserted elsewhere): look for
out-of-sequence MUMs

–! simple insertions: trivial to detect

Step 3: Close the Gaps

•! polymorphic regions

–! short ones: align them with dynamic programming
method

–! long ones: call MUMmer recursively w/ reduced
min MUM length

•! repeats

–! detected by overlapping MUMs

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

The LAGAN Method
Brudno et al., Genome Research, 2003

Given: genomes A and B

anchors = find_anchors!A, B"#
$%&'#(: finish global alignment with DP constrained by anchors

find_anchors!)*#+"#
 $%&'#,: find local alignments by matching, chaining k-mer seeds
 $%&'#-: anchors = highest-weight sequence of local alignments
 for each pair of adjacent anchors a1, a2 in anchors

 if a1, a2 are more than d bases apart
 A’, B’ = sequences between a1, a2
 sub-anchors = find_anchors(A’, B’)
 insert sub-anchors between a1, a2 in anchors

return anchors

Step 1a: Finding Seeds in LAGAN

•! degenerate k-mers: matching k-long sequences with
a small number mismatches allowed

•! by default, LAGAN uses 10-mers and allows 1
mismatch

cacg cgcgctacat acct

acta cgcggtacat cgta

Finding Seeds in LAGAN
•! example: a trie to represent all 3-mers of the sequence

gaaccgacct

a c g

3, 7 2 4 5 8 1 6

a c c g a

c c g t a a c

•! one sequence is used to build the trie

•! the other sequence (the query) is “walked” through to
find matching k-mers

Allowing Degenerate Matches
•! suppose we’re allowing 1 base to mismatch in looking

for matches to the 3-mer acc; need to explore green
nodes

a c g

3, 7 2 4 5 8 1 6

a c c g a

c c g t a a c

LAGAN Uses Threaded Tries
•! in a threaded trie, each leaf for word w1...wp has a back

pointer to the node for w2...wp

a c g

3, 7 2 4 5 8 1 6

a c c g a

c c g t a a c

Traversing a Threaded Trie
•! consider traversing the trie to find 3-mer matches for the

query sequence: accgt

a c g

3, 7 2 4 5 8 1 6

a c c g a

c c g t a a c

•! usually requires following only two pointers to match against
the next k-mer, instead of traversing tree from root for each

Step 1b: Chaining Seeds in LAGAN

•! can chain seeds s1 and s2 if

–! the indices of s1 > indices
of s2 (for both sequences)

–! s1 and s2 are near each
other

•! keep track of seeds in the
“search box” as the query
sequence is processed

Figure from: Brudno et al. BMC Bioinformatics, 2003

Step 2: Chaining in LAGAN

•! use sparse dynamic programming to chain local
alignments

Slide from Serafim Batzoglou, Stanford University

The Problem: Find a Chain of Local Alignments

!.*/"#!#!.0*/0"#

1&2341&$#

.#5#.0#

/#5#/0#

6789#:;87:#7:4<=>&=%#97$#7#

?&4<9%#

@ABC#%9⌎=#?4%9#94<9&$%#

%;%7:#?&4<9%#

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

•! 1,…, N: rectangles

•! (hj, lj): y-coordinates of rectangle j

•! w(j): weight of rectangle j

•! V(j): optimal score of chain ending in j

•! L: list of triplets (lj, V(j), j)

!! L is sorted by lj: smallest (North) to largest (South) value

!! L is implemented as a balanced binary tree

/#

9#

:#

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

Main idea:

•! Sweep through x-
coordinates

•! To the right of b, anything
chainable to a is chainable
to b

•! Therefore, if V(b) > V(a),
rectangle a is “useless” for
subsequent chaining

•! In L, keep rectangles j
sorted with increasing lj-
coordinates "
 sorted with increasing V(j)
score

V(b)
V(a)

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

Go through rectangle x-coordinates, from lowest to highest:

1.! When on the leftmost end of rectangle i:

a.! j: rectangle in L, with largest lj < hi

b.! V(i) = w(i) + V(j)

2.! When on the rightmost end of i:

a.! k: rectangle in L, with largest lk # li

b.! If V(i) > V(k):

i.! INSERT (li, V(i), i) in L

ii.! REMOVE all (lj, V(j), j) with V(j) # V(i) & lj $ li

i

j

k

Slide from Serafim Batzoglou, Stanford University

Example

x

y

a: 5

c: 3

b: 6

d: 4

e: 2

2

5
6

9
10

11
12

14
15
16

1.! When on the leftmost end of rectangle i:

a.! j: rectangle in L, with largest lj < hi

b.! V(i) = w(i) + V(j)

2.! When on the rightmost end of i:
a.! k: rectangle in L, with largest lk # li

b.! If V(i) > V(k):

i.! INSERT (li, V(i), i) in L

ii.! REMOVE all (lj, V(j), j) with V(j) # V(i) & lj $ li

a b c d e
V

5

L

li

V(i)

i

5

5

a

8

11

8

c

11 12

9

11

b

15

12

d

13

16

13

3

Slide from Serafim Batzoglou, Stanford University

Time Analysis

1.! Sorting the x-coords takes O(N log N)

2.! Going through x-coords: N steps

3.! Each of N steps requires O(log N) time:

•! Searching L takes log N

•! Inserting to L takes log N

•! All deletions are consecutive, so log N per deletion

•! Each element is deleted at most once: N log N for all deletions

•! Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in
a balanced binary search tree

Constrained Dynamic
Programming

•! if we know that the ith
element in one sequence
must align with the jth
element in the other, we
can ignore two rectangles
in the DP matrix

i

j

Step 3: Computing the Global
Alignment in LAGAN

Figure from: Brudno et al. Genome Research, 2003

•! given an anchor that
starts at (i, j) and ends
at (i’, j’), LAGAN limits
the DP to the
unshaded regions

•! thus anchors are
somewhat flexible

Step 3: Computing the Global
Alignment in LAGAN

Figures from: Brudno et al. Genome Research, 2003

Figure from: Perna et al. Nature, 2001

Example Alignment:
E. Coli O157:H7 vs. E. coli K-12

