Linking Genetic Variation to Important Phenotypes:

SNPs, CNVs, GWAS, and eQTLs

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Mark Craven
craven@biostat.wisc.edu
Spring 2011

1. Understanding Human Genetic Variation

- the "human genome" was determined by sequencing DNA from a small number of individuals
- the HapMap project looked at polymorphisms in 270 individuals
- the 1000 Genomes project is sequencing the genomes of 1000 individuals from diverse populations

1. Understanding Human Genetic Variation

- the "human genome" was determined by sequencing DNA from a small number of individuals
- the HapMap project looked at polymorphisms in 270 individuals
- the 1000 Genomes project is sequencing the genomes of 1000 individuals from diverse populations

Genetic Variation: Single Nucleotide Polymorphisms (SNPs)

Genetic Variation: Copy Number Variants (CNVs)

Genetic Variation: Copy Number Variants (CNVs)

Copy-number loss of genes ABC

1000 Genomes Project

project goal: produce a catalog of human variation down to variants that occur at 1% frequency or less over the genome

2. Understanding Associations Between Genetic Variation and Disease

genome wide association study (GWAS)

- gather some population of individuals
- genotype each individual at polymorphic markers (usually SNPs)
- test association between state at marker and some variable of interest (say disease)
- · adjust for multiple comparisons

Type 2 Diabetes Results: 386,731 markers

Type 2 diabetes association P values by chromosome (386,731 markers). The x-axis is the genomic position by chromosome 1-22 and X (by color), and the y-axis is the negative base 10 logarithm of the P value.

Wellcome Trust GWAS

2. Understanding Associations Between Genetic Variation and Disease

International Cancer Genome Consortium

- includes the NIH's Cancer Genome Atlas
- sequencing DNA from 500 tumor samples for <u>each</u> of 50 different cancers
- goal is to distinguish drivers (mutations that cause and accelerate cancers) from passengers (mutations that are byproducts of cancer's growth)

Some Cancer Genomes

- Genomic rearrangements: 58
- Copy-number changes: 334

SKIN CANCER Cancer: metastatic melanoma • Sequenced: full genome • Source: COLO-829 cell line • Point mutations: 33,345 • Point mutations in gene regions: 292 • Genomic rearrangements: 51 • Copy-number changes: 41

BREAST CANCER Cancer: basal-like breast cancer

- Sequenced: full genome
- Source: primary tumour, brain metastasis, and tumours transplanted into mice
- Point mutations: 27,173 in primary, 51,710 in metastasis and 109,078 in transplant
- Point mutations in gene regions: 200 in primary, 225 in metastasis, 328 in transplant
- · Genomic rearrangements: 34
- Copy-number changes: 155 in primary, 101 in metastasis, 97 in transplant

3. Understanding Associations Between Genetic Variation and Complex Phenotypes

quantitative trait loci (QTL) mapping

- gather some population of individuals
- · genotype each individual at polymorphic markers
- map quantitative trait(s) of interest to chromosomal locations that seem to explain variation in trait

QTL Mapping Example

QTL Mapping Example

• QTL mapping of mouse blood pressure, heart rate [Sugiyama et al., Broman et al.]

$$LOD(q) = log_{10} \frac{P(q \mid QTL \text{ at } m)}{P(q \mid no QTL \text{ at } m)}$$

QTL Mapping

- QTL mapping can be done for large-scale quantitative data sets
 - expression QTL: traits are expression levels of various genes
 - metabolic QTL: traits are metabolite levels

 case study: uncovering the genetic/metabolic basis of diabetes (Attie lab at UW)

Expression QTL (eQTL) Mapping

Metabolite QTL (mQTL) Mapping

4. Understanding Associations Between Genetics and Phenotypes via High-Throughput Manipulations

can measure response of interest by suppressing/mutating genes on a genome-wide scale

- mutant libraries (i.e. knock out each gene)
- siRNA libraries (i.e. suppress the transcripts of each gene)

Inferring Models of Host-Virus Interactions

- Brome mosaic virus (BMV) is a positive-strand RNA virus whose replication, gene expression and Transform yTHC essential library virion formation has been recapitulated in yeast
- The Ahlquist lab at UW has identified host genes affecting BMV replication via a genomewide screen with the yeast deletion library

Computational Problems

- · assembly and alignment of thousands of genomes
- identifying functional roles of markers of interest (which genes/pathways does a mutation affect and how?)
- identifying interactions in multi-allelic diseases (which combinations of mutations lead to a disease state?)
- identifying genetic/environmental interactions that lead to disease
- inferring network models that exploit all sources of evidence: genotype, expression, metabolic

Is determining association the end of the story?

a simple case: CFTR

Many measured SNPs not in coding regions

 genes encoding CD40 and CD40L with relative positions of the SNPs studied

Expression QTL (eQTL) Mapping

