Inference in Metabolic Network Models using Flux Balance Analysis

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Mark Craven
craven@biostat.wisc.edu
Spring 2011

Goals for Lecture

the key concepts to understand are the following

- the FBA representation
- the role of constraints and the steady state assumption in FBA
- the role of optimization in FBA
- how dynamic behavior is simulated in FBA

Quantitative Prediction with Network Models

- given complete, accurate models of metabolic and regulatory networks, we could use simulations to make predictions
 - e.g. how fast will my bacteria grow if I put them in medium M?

Quantitative Prediction with Network Models

consider a model in which

- nodes represent metabolites
- edges represent reaction fluxes

$$\frac{dA}{dt} = -v_1 - v_2 + v_3 + b_1$$

$$\frac{dB}{dt} = v_1 + v_4 - b_2$$

$$\frac{dC}{dt} = v_2 - v_3 - v_4 - b_3$$

Quantitative Prediction with Network Models

- but there are always lots of things we don't know
 - all of the metabolic reactions
 - the kinetics of most reactions
 - all of the actors/mechanisms involved in regulation
 - how the regulatory network interacts with the metabolic network
- in many cases, though, we can still make interesting predictions using constraint-based models
- key insight: instead of calculating exactly what a network does, narrow the range of possibilities by constraints

Flux Balance Analysis

Figures from Kauffman et al., Current Opinion in Biotechnology, 2003.

- 1. metabolic reactions and metabolites (A, B, C in figure) are specified; internal fluxes (v_i) and exchange fluxes (b_i) don't have to be known
- 2. describe as a system of ordinary differential equations (mass balance constraints) in matrix notation: **S** is the stoichiometric matrix and **V** is the vector of fluxes

Flux Balance Analysis

3. make the *steady state mass balance* assumption: no accumulation or depletion of metabolites in the cell

$$\mathbf{S} \cdot \mathbf{v} = 0$$

Flux Balance Analysis

4. add known constraints; this defines a solution space for the flux-balance equations

$$0 \le b_1 \le 5$$

$$0 \le v_1 + v_2 \le 5$$

$$0 \le v_1 + v_4 \le 2$$

$$v_3 = 0 \text{ (irreversible reaction)}$$

Figure from Kauffman et al., Current Opinion in Biotechnology, 2003.

Constraints on Cellular Functions

- physico-chemical: mass, energy and momentum must be conserved
- environmental: nutrient availability, temperature, etc.
- topobiological: molecules are crowded in cells and this constrains their form and function
 - e.g. bacterial DNA is about 1,000 times longer than the length of a cell; has to be tightly packed yet accessible ⇒ spatio-temporal patterns to how DNA is organized
- regulatory: the gene products made and their activities may be switched on and off depending on conditions

Flux Balance Analysis

5. define an objective function (e.g. maximization of biomass or ATP); find the optimal points in the solution space

Figure from Kauffman et al., Current Opinion in Biotechnology, 2003.

6. analyze the system behavior under different conditions: varying constraints, adding or removing reactions etc.

Determining Optimal States

Figure from Price et al., Nature Reviews Microbiology, 2004.

- given an objective function, we can find one optimal state with linear programming (LP), or all optimal states with mixed-integer LP
- given an experimental measurement of fluxes, can calculate potential objective functions that would lead towards that state

Simulating Dynamic Behavior

 The "core" FBA method assumes the cell is at steady state, so how can we simulate dynamic behavior, like growth curves?

Quasi Steady-State Simulations

- the time constants that describe metabolic transients are fast (milliseconds to tens of seconds)
- the time constants associated with transcriptional regulation (minutes) and cell growth (hours) are slow
- quasi steady-state assumption: behavior inside cell is in steady-state during short time intervals
- can do simulations by iteratively
 - changing representation of external environment (e.g. glucose levels)
 - doing steady-state FBA calculations

Quasi Steady-State Example

Incorporating Regulatory Constraints

Figure from Covert & Palsson., Journal of Biological Chemistry, 2002.

- we can ask how the optimal solution changes when we introduce regulatory constraints
- e.g. the presence of external glucose causes
 - MIc to stop repressing a glucose transporting operon
 - CRP to repress a glycerol kinase gene

A Case Study: Predicting *E. Coli* Growth

- E. coli model accounts for 906 metabolic genes
- 104 regulatory genes (regulating expression of 479 metabolic genes)

Part of the Model

Predicting Growth Phenotypes

- model predicts growth for various knockout strains/ environments
- compare predictions to experimentally measured growth

