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Goals for Lecture

the key concepts to understand are the following
» the FBA representation

* the role of constraints and the steady state
assumption in FBA

* the role of optimization in FBA
* how dynamic behavior is simulated in FBA




Quantitative Prediction with
Network Models

given complete, accurate models of metabolic and regulatory
networks, we could use simulations to make predictions
— e.g. how fast will my bacteria grow if | put them in medium M?

Quantitative Prediction with
Network Models

consider a model in which
* nodes represent metabolites
edges represent reaction fluxes
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Quantitative Prediction with
Network Models

but there are always lots of things we don’t know

— all of the metabolic reactions

— the kinetics of most reactions

— all of the actors/mechanisms involved in regulation

— how the regulatory network interacts with the
metabolic network

in many cases, though, we can still make interesting
predictions using constraint-based models

key insight: instead of calculating exactly what a network
does, narrow the range of possibilities by constraints

Flux Balance Analysis
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Figures from Kauffman et al., Current Opinion in Biotechnology, 2003.

metabolic reactions and metabolites (A, B, C in figure)

are specified; internal fluxes (v;) and exchange fluxes
(b;) don’t have to be known

describe as a system of ordinary differential equations
(mass balance constraints) in matrix notation: S is the
stoichiometric matrix and V is the vector of fluxes




Flux Balance Analysis

3. make the steady state mass balance assumption: no
accumulation or depletion of metabolites in the cell
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Flux Balance Analysis

4. add known constraints; this defines a solution space
for the flux-balance equations
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Figure from Kauffman et al., Current Opinion in Biotechnology, 2003.




Constraints on Cellular Functions

physico-chemical. mass, energy and momentum must
be conserved

environmental. nutrient availability, temperature, etc.

topobiological: molecules are crowded in cells and this
constrains their form and function

— e.g. bacterial DNA is about 1,000 times longer than
the length of a cell; has to be tightly packed yet
accessible = spatio-temporal patterns to how DNA is
organized

regulatory: the gene products made and their activities
may be switched on and off depending on conditions

Flux Balance Analysis

define an objective function (e.g. maximization of
biomass or ATP); find the optimal points in the
solution space
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Figure from Kauffman et al., Current Opinion in Biotechnology, 2003.

analyze the system behavior under different
conditions: varying constraints, adding or removing
reactions etc.




Determining Optimal States
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Figure from Price et al., Nature Reviews Microbiology, 2004.

« given an objective function, we can find one optimal state
with linear programming (LP), or all optimal states with
mixed-integer LP

» given an experimental measurement of fluxes, can

calculate potential objective functions that would lead
towards that state

Simulating Dynamic Behavior
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* The “core” FBA method assumes the cell is at steady state,

so how can we simulate dynamic behavior, like growth
curves?




Quasi Steady-State Simulations

the time constants that describe metabolic transients are
fast (milliseconds to tens of seconds)

the time constants associated with transcriptional
regulation (minutes) and cell growth (hours) are slow

quasi steady-state assumption: behavior inside cell is in
steady-state during short time intervals

can do simulations by iteratively

« changing representation of external environment (e.g.
glucose levels)

* doing steady-state FBA calculations

Quasi Steady-State Example
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Incorporating Regulatory Constraints

Growth Prediction
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Figure from Covert & Palsson., Journal of Biological Chemistry, 2002.

* we can ask how the optimal solution changes when we
introduce regulatory constraints

» e.g. the presence of external glucose causes

— Mic to stop repressing a glucose transporting operon
— CRP to repress a glycerol kinase gene

A Case Study: Predicting E. Coli
Growth
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» E. coli model accounts for 906 metabolic genes

» 104 regulatory genes (regulating expression of 479
metabolic genes)




Part of the Model
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Predicting Growth Phenotypes

model predicts growth for various knockout strains/
environments

compare predictions to experimentally measured growth
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More FBA
Analyses

Figure from Price et al., o
Nature Reviews Microbiology, 2004. ’




