
Stochastic Context Free Grammars

for RNA Structure Modeling

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Mark Craven

craven@biostat.wisc.edu

Spring 2011

Goals for Lecture

the key concepts to understand are the following

•! transformational grammars

•! the Chomsky hierarchy

•! context free grammars

•! stochastic context free grammars

•! parsing ambiguity

•! the Inside and Outside algorithms

•! parameter learning via the Inside-Outside algorithm

Modeling RNA with

Stochastic Context Free Grammars

•! consider tRNA genes

–! 274 in yeast genome, ~1500 in human genome

–! get transcribed, like protein-coding genes

–! don’t get translated, therefore base statistics much
different than protein-coding genes

–! but secondary structure is conserved

•! to recognize new tRNA genes, model known ones
using stochastic context free grammars [Eddy &
Durbin, 1994; Sakakibara et al. 1994]

•! but what is a grammar?

Transformational Grammars
•! a transformational grammar characterizes a set of

legal strings

•! the grammar consists of

–! a set of abstract nonterminal symbols

–! a set of terminal symbols (those that actually
appear in strings)

–! a set of productions

!

s, c
1
, c

2
, c

3
, c

4{ }

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c

A
4
!c

!

A, C, G, U{ }

A Grammar for Stop Codons

•! this grammar can generate the 3 stop codons:
UAA, UAG, UGA

•! with a grammar we can ask questions like

–! what strings are derivable from the grammar?

–! can a particular string be derived from the
grammar?

1
cs!

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c A

4
!c

The Parse Tree for UAG

s

1
c

2
c

3
c

U

A

G

1
cs!

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c A

4
!c

The Derivation for UAG

!

s" c
1
" Uc

2
" UAc

3
" UAG

1
cs!

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c A

4
!c

Some Shorthand

32
Acc !

42
Gcc !

!

c
2
" Ac

3
| Gc

4

The Chomsky Hierarchy

context-free

context-sensitive

unrestricted

regular

•! a hierarchy of grammars defined by restrictions on

productions

The Chomsky Hierarchy

!" ,

!!

u,v

X

are nonterminals

is a terminal

are any sequence of terminals/nonterminals

is any non-null sequence of terminals/nonterminals

•! regular grammars

•! context-free grammars

•! context-sensitive grammars

•! unrestricted grammars

vu X! X!u

!"u

2121
!"""" #u

!"" #
21

u

CFGs and RNA

•! context free grammars are well suited to modeling

RNA secondary structure because they can represent

base pairing preferences

•! a grammar for a 3-base stem with and a loop of either

GAAA or GCAA!

A U| CG |G C | UA 1111 wwwws!

GCAA |GAAA 3 !w

A U| CG |G C | UA 22221 wwwww !

A U| CG |G C | UA 33332 wwwww !

CFGs and RNA

Figure from: Sakakibara et al. Nucleic Acids Research, 1994

Ambiguity in Parsing

“I shot an elephant in my pajamas. How he got in my
pajamas, I’ll never know.” – Groucho Marx

An Ambiguous RNA Grammar

!

s"G s C

!

s"G s

!

s" A A

s!

G! C!

A!

s!

G! C!s!

G! s!

A!

s!

G! C!

A!

s!

G! s!

G! s!

A!

C!

s!

G!

A!

s!

G! C!s!

G! s!

A!

C!

•! with this grammar, there are 3 parses for

the string GGGAACC!

A Probabilistic Version

of the Stop Codon Grammar

•! each production has an associated probability

•! the probabilities for productions with the same left-hand
side sum to 1

•! this grammar has a corresponding Markov chain model

1.0 1.0 0.7

0.3

1.0 0.2

0.8

1
cs!

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c A

4
!c

Stochastic Context Free Grammars
(a.k.a. Probabilistic Context Free Grammars)

A U| CG |G C | UA 1111 wwwws!

GCAA |GAAA 3 !w

A U| CG |G C | UA 22221 wwwww !

A U| CG |G C | UA 33332 wwwww !

0.25 0.25 0.25 0.25

0.1 0.4 0.4 0.1

0.25 0.25 0.25 0.25

0.8 0.2

Stochastic Grammars?

 …the notion “probability of a sentence” is an entirely

useless one, under any known interpretation of this

term.

—! Noam Chomsky

(famed linguist)

 Every time I fire a linguist, the performance of the

recognizer improves.

—! Fred Jelinek

(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin,

Speech and Language Processing

Three Key Questions

•! How likely is a given sequence?

 the Inside algorithm

•! What is the most probable parse for a given

sequence?

 the Cocke-Younger-Kasami (CYK) algorithm

•! How can we learn the SCFG parameters given a

grammar and a set of sequences?

 the Inside-Outside algorithm

Chomsky Normal Form

•! it is convenient to assume that our grammar is in Chomsky

Normal Form; i.e all productions are of the form:

•! any CFG can be put into Chomsky Normal Form

yzv!

Av!

right hand side consists of two nonterminals

right hand side consists of a single terminal

Converting a Grammar to CNF

!

s"G s C

!

s"G s

!

s" A A

!

b
G
"G

!

b
C
"C

!

b
A
" A

!

s" bG p

!

p" s bC

!

s" b
G
 s

!

s" b
A
 b

A

Parameter Notation

•! for productions of the form , we’ll denote

the associated probability parameters

•! for productions of the form , we’ll denote

the associated probability parameters

yzv!

Av!

)(Ae
v

),(zyt
v transition

emission

Determining the Likelihood of a

Sequence: The Inside Algorithm

•! a dynamic programming method, analogous to the

Forward algorithm

•! involves filling in a 3D matrix

 ! representing the probability of all parse subtrees rooted

at nonterminal v for the subsequence from i to j

),,(vji!

Determining the Likelihood of a

Sequence: The Inside Algorithm

•! : the probability of all parse subtrees

rooted at nonterminal v for the subsequence from i to j

),,(vji!

v

y z

1 L i j

yzv !

Inside Calculation Example

G! A!G! C!G! A! C!

s!

s!

s!

bA! bA! bC!bG! bG!

p!

!

b
G
"G

!

b
C
"C

!

b
A
" A

!

s" bG p

!

p" s bC

!

s" b
G
 s

!

s" b
A
 b

A

G! A!G! C!G! A! C!

s!

s!

s!

bA! bA! bC!bG! bG!

p!

!

"(2,6,s) = ts(bG, p) "(2,2,bG) "(3,6, p) +

 ts(bG,s) "(2,2,bG) "(3,6,s)

Determining the Likelihood of a

Sequence: The Inside Algorithm
v

y z

1 L i j k k+1

!

"(i, j,v) = tv (y,z) "(i,k,y) "(k +1, j,z)
k= i

j#1

$
z=1

M

$
y=1

M

$

M is the number of nonterminals in the grammar

The Inside Algorithm

!

"(i, j,v) = tv (y,z) "(i,k,y) "(k +1, j,z)
k= i

j#1

$
z=1

M

$
y=1

M

$

•! initialization (for i = 1 to L, v = 1 to M)

•! iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M)

•! termination

)(),,(
iv
xevii =!

)1 ,,1()Pr(Lx !=

start nonterminal

Learning SCFG Parameters
•! if we know the parse tree for each training sequence, learning the

SCFG parameters is simple

–! no hidden part of the problem during training

–! count how often each parameter (i.e. production) is used

–! normalize/smooth to get probabilities

•! more commonly, there are many possible parse trees per
sequence – we don’t know which one is correct

–! thus, use an EM approach (Inside-Outside)

–! iteratively

•! determine expected # times each production is used

–! consider all parses

–!weight each by it’s probability

•! set parameters to maximize these counts

The Inside-Outside Algorithm

•! we can learn the parameters of an SCFG from
training sequences using an EM approach called
Inside-Outside

•! in the E-step, we determine

–! the expected number of times each nonterminal is
used in parses

–! the expected number of times each production is
used in parses

•! in the M-step, we update our production probabilities

)(vc

)(yzvc !

)(Avc !

The Outside Algorithm

•! : the probability of parse trees rooted at the
start nonterminal, excluding the probability of all
subtrees rooted at nonterminal v covering the
subsequence from i to j

),,(vji!

v

y z

1 L i j

S

Outside Calculation Example

!

b
G
"G

!

b
C
"C

!

b
A
" A

!

s" bG p

!

p" s bC

!

s" b
G
 s

!

s" b
A
 b

A

G! A!G! C!G! A! C!

s!

bC!bG!

p!

s!

!

"(2, 6, s) = tp (s, bC)#(7, 7, bC)"(2, 7, p)

The Outside Algorithm

z

y

v

1 L k j

S

i-1 i

•! we can recursively calculate from

values we’ve calculated for y

•! the first case we consider is where v is used in

productions of the form:

!

ty (z,v) "(k,i #1,z) $(k, j,y)
k=1

i#1

%
z=1

M

%
y=1

M

%

zvy !

),,(vji! !

The Outside Algorithm

•! the second case we consider is where v is used in

productions of the form: vzy !

z

y

v

1 L k j

S

j+1 i

!

ty (v,z) "(j +1,k,z) #(i,k,y)
k= j+1

L

$
z=1

M

$
y=1

M

$

The Outside Algorithm

!

"(i, j,v) = ty (z,v) #(k,i $1,z) "(k, j,y)
k=1

i$1

%
z=1

M

%
y=1

M

% +

 ty (v,z) #(j +1,k,z) "(i,k,y)
k= j+1

L

%
z=1

M

%
y=1

M

%

•! initialization

•! iteration (for i = 1 to L, j = L to i, v = 1 to M)

!

"(1,L, 1) =1 (the start nonterminal)

MvvL to2for 0),,1(==!

The Inside-Outside Algorithm

•! we can learn the parameters of an SCFG from
training sequences using an EM approach called
Inside-Outside

•! in the E-step, we determine

–! the expected number of times each nonterminal is
used in parses

–! the expected number of times each production is
used in parses

•! in the M-step, we update our production probabilities

)(vc

)(yzvc !

)(Avc !

The Inside-Outside Algorithm

)(

)(
),(ˆ

vc

yzvc
zyt

v

!
=

!

=

 tv (y,z) "(i, j,v) #(i,k,y) #(k +1, j,z)
k= i

j$1

%
j= i+1

L

%
i=1

L$1

%

"(i, j,v) #(i, j,v)
j= i

L

%
i=1

L

%

•! the EM re-estimation equations (for 1 sequence) are:

)(

)(
)(ˆ

vc

Avc
Ae

v

!
=

!

=

"(i,i,v)ev (A)
i |xi =A

#

"(i, j,v)$(i, j,v)
j= i

L

#
i=1

L

#

cases where v used

to generate A

cases where v used

to generate any subsequence

Finding the Most Likely Parse:

The CYK Algorithm

•! involves filling in a 3D matrix

 ! representing the most probable parse subtree rooted at

nonterminal v for the subsequence from i to j

!

"(i, j,v)

!

"(i, j,v)

•! and a matrix for the traceback

 ! storing information about the production at the top of this

parse subtree

The CYK Algorithm

!

"(i, j,v) =max y,z

k= i… j#1

"(i,k,y) + "(k +1, j,z) + log tv (y,z){ }

•! initialization (for i = 1 to L, v = 1 to M)

•! iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M)

•! termination

!

"(i,i,v) = loge
v
(x

i
)

!

logP(x, ˆ " |#) = $(1,L, 1)

start nonterminal

!

"(i,i,v) = 0,0,0()

!

"(i, j,v) = argmax y,z

k= i… j#1

$(i,k,y) + $(k +1, j,z) + log tv (y,z){ }

The CYK Algorithm Traceback
•! initialization:

 push (1, L, 1) on the stack

•! iteration:

 pop (i, j, v) // pop subsequence/nonterminal pair

 (y, z, k) = "(i, j, v) // get best production identified by CYK

 if (y, z, k) == (0,0,0) // indicating a leaf

 attach xi as the child of v!

 else

 attach y, z to parse tree as children of v!

 push(i, k, y)

 push(k+1, j, z)

Comparison of SCFG Algorithms

to HMM Algorithms

HMM algorithm SCFG algorithm

optimal alignment Viterbi CYK

probability of

sequence

forward inside

EM parameter

estimation

forward-backward inside-outside

memory complexity

time complexity

)(LMO)(2
MLO

)(2
LMO)(33

MLO

