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Goals for Lecture 

the key concepts to understand are the following 

•! transformational grammars 

•! the Chomsky hierarchy 

•! context free grammars 

•! stochastic context free grammars 

•! parsing ambiguity 

•! the Inside and Outside algorithms 

•! parameter learning via the Inside-Outside algorithm 



Modeling RNA with  

Stochastic Context Free Grammars 

•! consider tRNA genes 

–! 274 in yeast genome, ~1500 in human genome 

–! get transcribed, like protein-coding genes 

–! don’t get translated, therefore base statistics much 
different than protein-coding genes 

–! but secondary structure is conserved 

•! to recognize new tRNA genes, model known ones 
using stochastic context free grammars [Eddy & 
Durbin, 1994; Sakakibara et al. 1994] 

•! but what is a grammar? 

Transformational Grammars 
•! a transformational grammar characterizes a set of 

legal strings 

•! the grammar consists of 

–! a set of abstract nonterminal symbols 

–! a set of terminal symbols (those that actually 
appear in strings) 

–! a set of productions 
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A Grammar for Stop Codons 

•! this grammar can generate the 3 stop codons:               
UAA, UAG, UGA 

•! with a grammar we can ask questions like 

–! what strings are derivable from the grammar? 

–! can a particular string be derived from the 
grammar? 
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The Derivation for UAG 
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The Chomsky Hierarchy 

context-free 

context-sensitive 

unrestricted 

regular 

•! a hierarchy of grammars defined by restrictions on 

productions 

The Chomsky Hierarchy 
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•! regular grammars 

•! context-free grammars 

•! context-sensitive grammars 

•! unrestricted grammars 
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CFGs and RNA 

•! context free grammars are well suited to modeling 

RNA secondary structure because they can represent 

base pairing preferences 

•! a grammar for a 3-base stem with and a loop of either 

GAAA or GCAA!

A  U|  CG  |G  C  |  UA 1111 wwwws!

GCAA  |GAAA  3 !w

A  U|  CG  |G  C  |  UA 22221 wwwww !

A  U|  CG  |G  C  |  UA 33332 wwwww !

CFGs and RNA 

Figure from: Sakakibara et al.  Nucleic Acids Research, 1994 



Ambiguity in Parsing 

“I shot an elephant in my pajamas.  How he got in my 
pajamas, I’ll never know.” – Groucho Marx 

An Ambiguous RNA Grammar 
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•! with this grammar, there are 3 parses for 

the string GGGAACC!



A Probabilistic Version  

of the Stop Codon Grammar 

•! each production has an associated probability 

•! the probabilities for productions with the same left-hand 
side sum to 1 

•! this grammar has a corresponding Markov chain model 
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Stochastic Grammars? 

    …the notion “probability of a sentence” is an entirely 

useless one, under any known interpretation of this 

term. 

—! Noam Chomsky                                                  

(famed linguist) 

    Every time I fire a linguist, the performance of the 

recognizer improves. 

—! Fred Jelinek                                                    

(former head of IBM speech recognition group) 

Credit for pairing these quotes goes to Dan Jurafsky and James Martin,  

Speech and Language Processing 

Three Key Questions 

•! How likely is a given sequence?  

    the Inside algorithm 

•! What is the most probable parse for a given 

sequence?  

    the Cocke-Younger-Kasami (CYK) algorithm 

•! How can we learn the SCFG parameters given a 

grammar and a set of sequences? 

    the Inside-Outside algorithm 



Chomsky Normal Form 

•! it is convenient to assume that our grammar is in Chomsky 

Normal Form; i.e all productions are of the form: 

•! any CFG can be put into Chomsky Normal Form 
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right hand side consists of two nonterminals 

right hand side consists of a single terminal 

Converting a Grammar to CNF 
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Parameter Notation 

•! for productions of the form                    , we’ll denote 

the associated probability parameters 

•! for productions of the form                    , we’ll denote 

the associated probability parameters 
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Determining the Likelihood of a 

Sequence: The Inside Algorithm 

•! a dynamic programming method, analogous to the 

Forward algorithm 

•! involves filling in a 3D matrix 

 ! representing the probability of all parse subtrees rooted 

at nonterminal v for the subsequence from i to j 
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Determining the Likelihood of a 

Sequence: The Inside Algorithm 

•!                     : the probability of all parse subtrees 

rooted at nonterminal v for the subsequence from i to j 
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Determining the Likelihood of a 

Sequence: The Inside Algorithm 
v 
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M is the number of nonterminals in the grammar 

The Inside Algorithm 
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•! initialization (for i = 1 to L, v = 1 to M) 

•! iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M) 

•! termination 
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Learning SCFG Parameters 
•! if we know the parse tree for each training sequence, learning the 

SCFG parameters is simple 

–! no hidden part of the problem during training 

–! count how often each parameter (i.e. production) is used 

–! normalize/smooth to get probabilities 

•! more commonly, there are many possible parse trees per 
sequence – we don’t know which one is correct 

–! thus, use an EM approach (Inside-Outside) 

–! iteratively 

•! determine expected # times each production is used 

–! consider all parses 

–!weight each by it’s probability 

•! set parameters to maximize these counts 

The Inside-Outside Algorithm 

•! we can learn the parameters of an SCFG from 
training sequences using an EM approach called 
Inside-Outside 

•! in the E-step, we determine 

–! the expected number of times each nonterminal is 
used in parses 

–! the expected number of times each production is 
used in parses 

•! in the M-step, we update our production probabilities 
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The Outside Algorithm 

•!                 : the probability of parse trees rooted at the 
start nonterminal, excluding the probability of all 
subtrees rooted at nonterminal v covering the 
subsequence from i to j 
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The Outside Algorithm 
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•! we can recursively calculate                   from         

values we’ve calculated for y 

•! the first case we consider is where v is used in 

productions of the form: 
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The Outside Algorithm 

•! the second case we consider is where v is used in 

productions of the form: vzy  !
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The Outside Algorithm 
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•! initialization 

•! iteration (for i = 1 to L, j = L to i, v = 1 to M) 
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The Inside-Outside Algorithm 

•! we can learn the parameters of an SCFG from 
training sequences using an EM approach called 
Inside-Outside 

•! in the E-step, we determine 

–! the expected number of times each nonterminal is 
used in parses 

–! the expected number of times each production is 
used in parses 

•! in the M-step, we update our production probabilities 
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The Inside-Outside Algorithm 
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•! the EM re-estimation equations (for 1 sequence) are: 
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Finding the Most Likely Parse: 

The CYK Algorithm 

•! involves filling in a 3D matrix 

 ! representing the most probable parse subtree rooted at 

nonterminal v for the subsequence from i to j 
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•! and a matrix for the traceback 

 ! storing information about the production at the top of this 

parse subtree  



The CYK Algorithm 
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"(i, j,v) =max y,z

k= i… j#1

"(i,k,y) + "(k +1, j,z) + log tv (y,z){ } 

•! initialization (for i = 1 to L, v = 1 to M) 

•! iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M) 

•! termination 
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The CYK Algorithm Traceback 
•! initialization: 

 push (1, L, 1) on the stack 

•! iteration: 

 pop (i, j, v)   // pop subsequence/nonterminal pair 

 (y, z, k) = "(i, j, v)  // get best production identified by CYK 

 if (y, z, k) == (0,0,0)     // indicating a leaf 

 attach xi as the child of v!

 else 

 attach y, z to parse tree as children of v!

 push(i, k, y) 

 push(k+1,  j, z) 



Comparison of SCFG Algorithms 

to HMM Algorithms 

HMM algorithm SCFG algorithm 
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