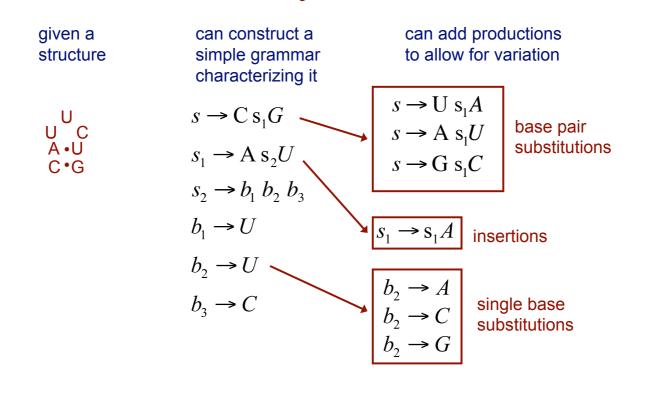
More on Stochastic Context Free Grammars for RNA Analysis

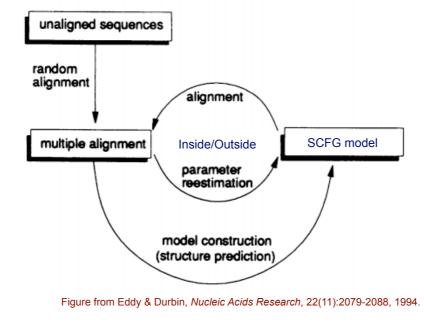
BMI/CS 776 www.biostat.wisc.edu/bmi776/ Mark Craven craven@biostat.wisc.edu Spring 2011

Goals for Lecture

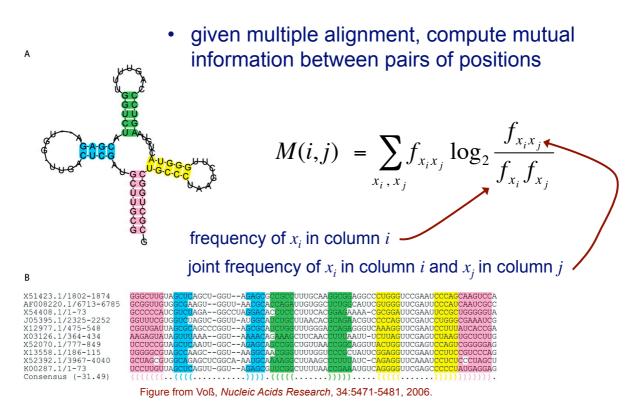

the key concepts to understand are the following

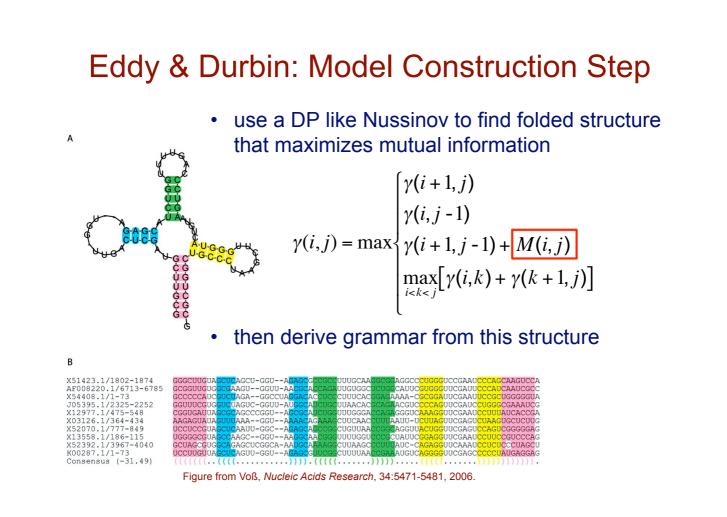
- approaches to determining the structure of an SCFG grammar
- the task of searching for sequences that "match" a given RNA structure

Where do we get a grammar?


- 1. from a canonical secondary structure
- 2. through an iterative, refinement process
- 3. alternatively, use a simple, generic one

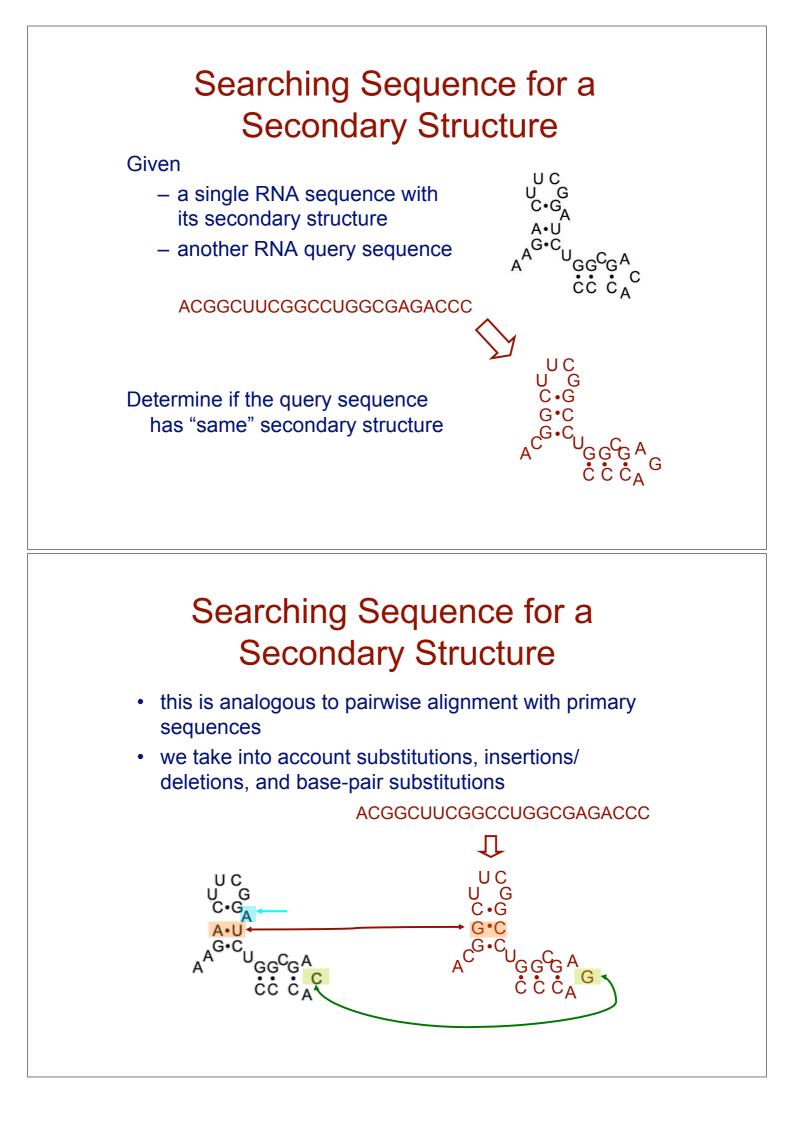
1. Deriving a Grammar from a Secondary Structure

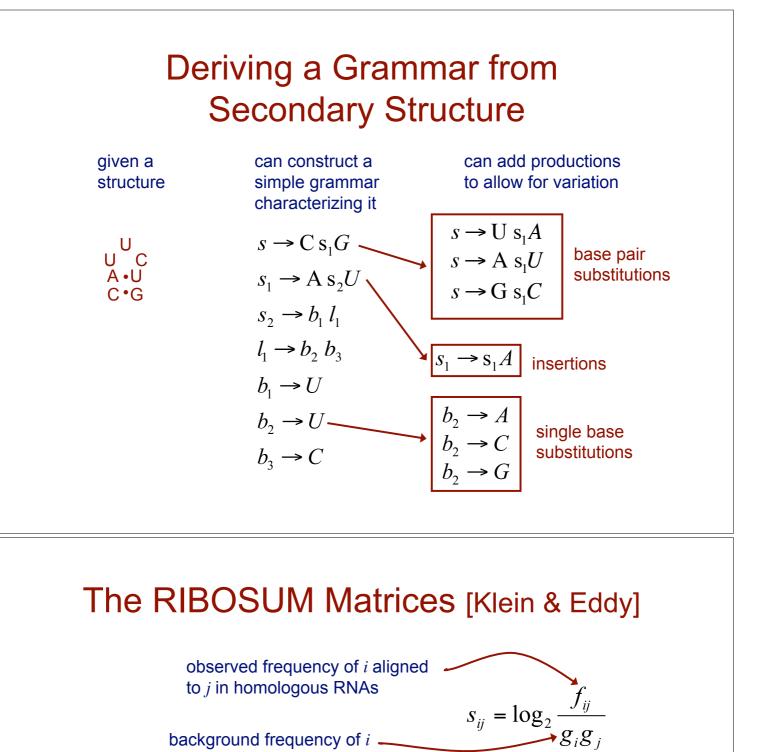



2. Deriving a Grammar Through an Iterative Process

 consider the approach used by Eddy & Durbin to learn an SCFG model of tRNAs

Eddy & Durbin: Model Construction Step





3. Using a Simple, Generic Grammar

 a grammar that could characterize almost any RNA structure

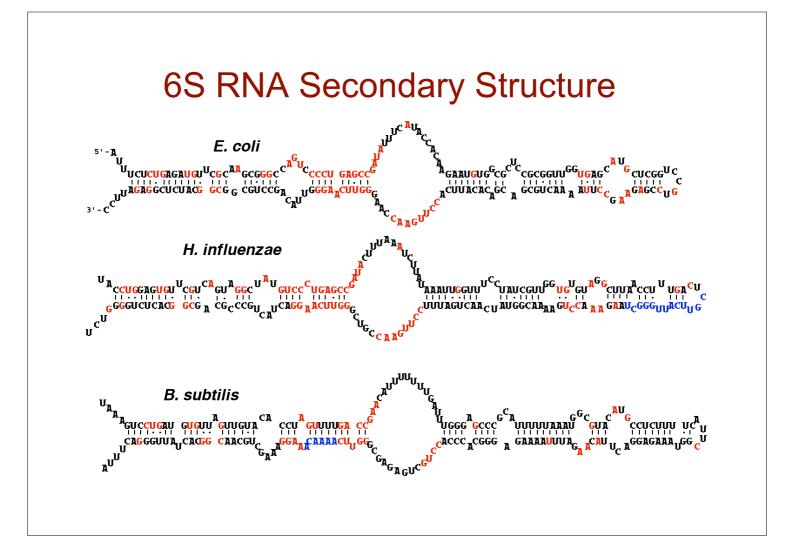
$$s \rightarrow C s_1 G \mid G s_1 C \mid A s_1 U \mid U s_1 A$$
$$s \rightarrow C s_1 \mid G s_1 \mid A s_1 \mid U s_1$$
$$s \rightarrow s_1 G \mid s_1 C \mid s_1 U \mid s_1 A$$
$$s \rightarrow G \mid C \mid U \mid A$$
$$s \rightarrow s s$$



background frequency of *i* ____

			Nuc	ing o	ana		0	0. 1							/		
AA	-2.49																
AC		-2.11									A	2.22					
AG		-8.89	-0.80								С	-1.86	1.16				
AU	-4.32	-2.04	-5.13	4.49							G	-1.46	-2.48	1.03			
CA	-8.84	-9.37	-10.41		-5.13						U	-1.39	-1.05	-1.74	1.65		
CC			-14.53		-10.45	-3.59						A	С	G	υ		
CG	-4.68	-5.86	-4.57	1.67	-3.57	-5.71	5.36										
CU	-12.64	-10.45	-10.14	-5.17	-8.49	-5.77	-4.96	-2.28									
GA	-6.86	-9.73	-8,61	-5.33	-7,98	-12,43	-6.00	-7,71	-1.05								
GC	-5.03	-3.81	-5.77	2.70	-5.95	-3.70	2.11	-5.84	-4.88	5.62							
GG	-8.39	-11.05	-5.38	-5.61	-11.36	-12.58	-4.66	-13.69	-8.67	-4.13	-1.98						
GU	-5.84	-4.72	-6.60	0.59	-7.93	-7.88	-0.27	-5.61	-6.10	1.21	-5.77	3.47					
UA	-4.01	-5.33	-5.43	1.61	-2.42	-6.88	2.75	-4,72	-5.85	1.60	-5.75	-0.57	4.97				
UC	-11.32	-8.67	-8.87	-4.81	-7.08	-7.40	-4.91	-3.83	-6.63	-4.49	-12.01	-5.30	-2.98	-3.21			
UG	-6.16	-6.93	-5.94	-0.51	-5.63	-8.41	1.32	-7.36	-7.55	-0.08	-4.27	-2.09	1.14	-4.76	3.36		
UU	-9.05	-7.83	-11.07	-2.98	-8.39	-5.41	-3.67	-5.21	-11.54	-3.90	-10.79	-4.45	-3.39	-5.97	-4.28	-0.02	
	AA	AC	AG	AU	CA	CC	CG	CU	GA	GC	GG	GU	UA	UC	UG	UU	
$s'_{ijkl} = \log_2 \frac{f'_{ijkl}}{g_i g_j g_k g_l}$ observed frequency of two base pairs <i>i-j</i> and <i>k-l</i> aligned to each other in homologous RNAs																	
		~!	10	<u><u></u></u>	J	IJ KI		observed frequency of two base									
		S_{iikl}	= 10	\mathbf{g}_{2} -			_	naire i i and bit aligned to each									
										pairs <i>i-j</i> and <i>k-l</i> aligned to each							
$S_i S_i S_k S_l$									other in hemologous DNAs								
e i e j e k e i								other in homologous RNAs									

Setting the Parameters in the Grammar


 Infer parameters from the RIBOSUM matrices (taking into account the latter are log-odds scores)

RSEARCH: Searching Sequence for a Secondary Structure

[Klein & Eddy, BMC Bioinformatics 2003]

- · the RSEARCH algorithm implements this idea
- but uses a somewhat different SCFG formulation covariance models (see section 10.3 in Durbin et al.)

An RSEARCH Case Study

- finding 6S genes in bacterial genomes
 - we used E. coli 6S as the query structure
 - searched 14 other genomes with known 6S genes
 - ~ 5,000 intergenic sequences on average
 - the top-scoring RSEARCH hit in all 14 genomes was the known 6S gene

Summary of RNA Analysis Tasks

- given a sequence, predict its secondary structure
- given a set of related RNA sequences, construct a model of the set
 - parameter learning (Inside-Outside)
 - structure refinement
- given a model of an RNA class, find sequences that belong to the class (Inside or CYK)
- given a sequence/structure, find other sequences with similar structure
- others not discussed