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Goals for Lecture 

the key concepts to understand are the following 

•! the gene-finding task 

•! the trade-off between potential predictive value and 

parameter uncertainty in choosing the order of a Markov 

model 

•! interpolated Markov models 

•! back-off models 



The Gene Finding Task 

Given: an uncharacterized DNA sequence 

Do: locate the genes in the sequence, including the 

coordinates of individual exons and introns 

Sources of Evidence for Gene Finding 

•! signals: the sequence signals (e.g. splice junctions) 
involved in gene expression 

•! content: statistical properties that distinguish protein-
coding DNA from non-coding DNA 

•! conservation: signal and content properties that are 
conserved across related sequences (e.g. syntenic 
regions of the mouse and human genome) 



Gene Finding: Search by Content 

•! encoding a protein affects the statistical properties of 

a DNA sequence 

–! some amino acids are used more frequently than 

others (Leu more popular than Trp) 

–! different numbers of codons for different amino 

acids (Leu has 6, Trp has 1) 

–! for a given amino acid, usually one codon is used 

more frequently than others 

•! this is termed codon preference 

•! these preferences vary by species 

Codon Preference in E. Coli 

AA      codon    /1000 
---------------------- 
Gly     GGG       1.89 
Gly     GGA       0.44 
Gly     GGU      52.99 
Gly     GGC      34.55 

Glu     GAG      15.68 
Glu     GAA      57.20 

Asp     GAU      21.63 
Asp     GAC      43.26 



Reading Frames 

•! a given sequence may encode a protein in any of the 

six reading frames 

G C T A C G G A G C T T C G G A G C 
C G A T G C C T C G A A G C C T C G 

Open Reading Frames (ORFs) 

G T T A T G G C T  • • •  T C G T G A T T 

•! an ORF is a sequence that 

–! starts with a potential start codon 

–! ends with a potential stop codon, in the same 
reading frame 

–! doesn’t contain another stop codon in-frame 

–! and is sufficiently long (say > 100 bases) 

•! an ORF meets the minimal requirements to be a 
protein-coding gene in an organism without introns 



Markov Models & Reading Frames 

•! consider modeling a given coding sequence 

•! for each “word” we evaluate, we’ll want to consider its 

position with respect to the reading frame we’re assuming 

G C T A C G G A G C T T C G G A G C 

G C T A C G 

reading frame 

G is in 3rd codon position 

C T A C G G G is in 1st position 

T A C G G A A is in 2nd position 

•! can do this using an inhomogenous model 

A Fifth Order Inhomogenous 

Markov Chain 
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Selecting the Order of a  

Markov Chain Model 
•! higher order models remember more “history” 

•! additional history can have predictive value 

•! example: 

–! predict the next word in this sentence fragment  

“…you__”  (are, give, idiot, say, see, too, …?) 

–! now predict it given more history 

“…can you___” 

“…say can you___” 

“…oh say can you___” 

Selecting the Order of a  

Markov Chain Model 

•! but the number of parameters we need to estimate 
grows exponentially with the order 

–! for modeling DNA we need                 parameters 
for an nth order model 

•! the higher the order, the less reliable we can expect 
our parameter estimates to be 

•! suppose we have 100k bases of sequence to 
estimate parameters of a model 

–! for a 2nd order homogenous Markov chain, we’d 
see each history ~1900 times on average 

–! for an 8th order chain, we’d see each history ~ 1.5 
times on average 
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Interpolated Markov Models 

•! the IMM idea: manage this trade-off by interpolating 

among models of various orders 

•! simple linear interpolation: 
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Interpolated Markov Models 

•! we can make the weights depend on the history 

–! for a given order, we may have significantly more 

data to estimate some words than others 

•! general linear interpolation 
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The GLIMMER System 
[Salzberg et al., Nucleic Acids Research, 1998] 

•! system for identifying genes in bacterial genomes 

•! uses 8th order, inhomogeneous, interpolated Markov 

chain models 

IMMs in  GLIMMER 

•! how does GLIMMER determine the      values? 

•! first, let’s express the IMM probability calculation 

recursively 
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IMMs in  GLIMMER 

•! if we haven’t seen                     more than 400 times, 

then compare the counts for the following: 
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•! use a statistical test (     ) to get a value d  indicating 

our confidence that the distributions represented by 

the two sets of counts are different 
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•! putting it all together 

)1,0(!dwhere 



IMM Example 

ACGA   25 
ACGC   40 
ACGG   15 
ACGT   20 
      ___ 
      100 

CGA  100 
CGC   90 
CGG   35 
CGT   75 
     ___ 
     300 

GA  175 
GC  140 
GG   65 
GT  120 
     ___ 
     500 

•! suppose we have the following counts from our training set 

!2 test: d = 0.857  !2 test: d = 0.141  

"3(ACG) = 0.857 # 100/400 = 0.214    

"2(CG) = 0    (d < 0.5,  c(CG) < 400)   

"1(G) = 1    (c(G) > 400)   

IMM Example (Continued) 

•! now suppose we want to calculate 
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PIMM,1(T |G) = "1(G)P(T |G) + 1# "1(G)( )PIMM,0(T)

                 = P(T |G)
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PIMM,2(T |CG) = "2(CG)P(T |CG) + 1# "2(CG)( )PIMM,1(T |G)

                    = P(T |G)
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PIMM,3(T | ACG) = "3(ACG)P(T | ACG) + 1# "3(ACG)( )PIMM,2(T |CG)

                      = 0.214 $ P(T | ACG) + (1# 0.214) $ P(T |G)
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Gene Recognition in GLIMMER 

•! essentially ORF classification  

•! for each ORF  

–! calculate the prob of the ORF sequence  in each of 

the 6 possible reading frames 

–! if the highest scoring frame corresponds to the 

reading frame of the ORF, mark the ORF as a gene 

•! for overlapping ORFs that look like genes 

–! score overlapping region separately 

–! predict only one of the ORFs as a gene 

GLIMMER Experiment 

•! 8th order IMM vs. 5th order Markov model 

•! trained on 1168 genes (ORFs really) 

•! tested on 1717 annotated (more or less known) genes 



GLIMMER Results  

TP FN FP & TP? 

•! GLIMMER has greater sensitivity than the baseline 

•! it’s not clear if its precision/specificity is better 

An Alternative Approach: 

 Back-off Models 

•! devised for language modeling                                       
[Katz, IEEE Transactions on Acoustics, Speech and Signal Processing, 1987] 

•! use nth order probability if we’ve seen this sequence 
(history + current character)  k times 

•! otherwise back off to lower-order 
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An Alternative Approach: 

 Back-off Models 

•! why do we need " and ! ? 

•! ": save some probability mass for sequences we 
haven’t seen 

•! !: distribute this saved mass to lower-order sequences 
(different ! for each history; really                             ) 

•! this is important for natural language, where there are 
many words that could follow a particular history 
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Simple Back-off Example 

•! given training sequence: TAACGACACG 

•! suppose " = 0.2 and k = 0 
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