Learning Sequence Motif Models Using Gibbs Sampling

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2011 Mark Craven craven@biostat.wisc.edu

Goals for Lecture

the key concepts to understand are the following

- Markov Chain Monte Carlo (MCMC) and Gibbs sampling
- Gibbs sampling applied to the motif-finding task
- parameter tying
- incorporating prior knowledge using Dirichlets and Dirichlet mixtures

Gibbs Sampling: An Alternative to EM

- EM can get trapped in local minima
- one approach to alleviate this limitation: try different (perhaps random) initial parameters
- Gibbs sampling exploits randomized search to a much greater degree
- can view it as a stochastic analog of EM for this task
- in theory, Gibbs sampling is less susceptible to local minima than EM
- [Lawrence et al., Science 1993]

Gibbs Sampling Approach

- in the EM approach we maintained a distribution Z_i over the possible motif starting points for each sequence
- in the Gibbs sampling approach, we'll maintain a specific starting point for each sequence a_i but we'll keep randomly resampling these

Gibbs Sampling Algorithm for Motif Finding

given: length parameter *W*, training set of sequences choose random positions for *a* do pick a sequence X_i estimate *p* given current motif positions *a* (using all sequences but X_i) (predictive update step) sample a new motif position a_i for X_i (sampling step) until convergence return: *p*, *a*

Markov Chain Monte Carlo (MCMC)

 Consider a Markov chain in which, on each time step, a grasshopper randomly chooses to stay in its current state, jump one state left or jump one state right.

- •
- let $P^{(t)}(u)$ represent the probability of being in state u at time t in the random walk $P^{(0)}(0) = 1 \qquad P^{(0)}(+1) = 0 \qquad P^{(0)}(+2) = 0$

 $P^{(1)}(0) = 0.5 \qquad P^{(1)}(+1) = 0 \qquad P^{(1)}(+2) = 0$ $P^{(1)}(0) = 0.5 \qquad P^{(1)}(+1) = 0.25 \qquad P^{(1)}(+2) = 0$ $P^{(2)}(0) = 0.375 \qquad P^{(2)}(+1) = 0.25 \qquad P^{(2)}(+2) = 0.0625$ $\vdots \qquad \vdots \qquad \vdots$ $P^{(100)}(0) \approx 0.11 \qquad P^{(100)}(+1) \approx 0.11 \qquad P^{(100)}(+2) \approx 0.11$

The Stationary Distribution

• let *P*(*u*) represent the probability of being in state *u* at any given time in a random walk on the chain

$$P^{(t)}(u) \approx P^{(t+1)}(u)$$

$$P^{(t+1)}(u) = \sum_{v} P^{(t)}(v)\tau(u \mid v)$$
probability of
state v
probability of
transition $v \rightarrow u$

 the stationary distribution is the set of such probabilities for all states

Markov Chain Monte Carlo (MCMC)

- we can view the motif finding approach in terms of a Markov chain
- each state represents a configuration of the starting positions (*a_i* values for a set of random variables A₁ ... A_n)
- transitions correspond to changing selected starting positions (and hence moving to a new state)

ACAT <mark>CCG</mark>		AC <mark>ATC</mark> CG
CGACTAC		CGACTAC
ATTGAGC		ATTGAGC
CGTTGAC		CGTTGAC
GAGTGAT		GAGTGAT
TCGTTGG	$\tau(y \mid u)$	TCGTTGG
ACAGGAT	u(v + u)	ACAGGAT
TAGCTAT		TAGCTAT
GCTACCG		GCTACCG
GGCCTCA		GGCCTCA
state u		state v

Markov Chain Monte Carlo

- for the motif-finding task, the number of states is enormous •
- key idea: construct Markov chain with stationary • distribution equal to distribution of interest; use sampling to find most probable states
- detailed balance:

state *u*

$$P(u)\tau(v \mid u) = P(v)\tau(u \mid v)$$
probability of
state u
probability of
transition $u \rightarrow v$

when detailed balance holds:

$$\frac{1}{N}\lim_{N\to\infty}count(u) = P(u)$$

MCMC with Gibbs Sampling

Gibbs sampling is a special case of MCMC in which

- Markov chain transitions involve changing one variable at a time
- transition probability is conditional probability of the changed variable given all others
- i.e. we sample the joint distribution of a set of random variables $P(A_1...A_n)$ by iteratively sampling from $P(A_i | A_1 ... A_{i-1}, A_{i+1} ... A_n)$

Gibbs Sampling Approach possible state transitions when first sequence is selected • ACATCCG CGACTAC ACATCCG ACATCCG ATTGAGC CGACTAC CGACTAC CGTTGAC ATTGAGC • ACATCCG ATTGAGC GAGTGAT CGTTGAC CGACTAC CGTTGAC TCGTTGG ACATCCG GAGTGAT ATTGAGC GAGTGAT ACAGGAT CGACTAC TCGTTGG CGTTGAC TCGTTGG TAGCTAT ACATCCG ATTGAGC ACAGGAT GAGTGAT ACAGGAT **GCTACCG** CGACTAC CGTTGAC TAGCTAT TCGTTGG TAGCTAT GGCCTCA ATTGAGC GAGTGAT **GCTACCG** ACAGGAT **GCTACCG** CGTTGAC TCGTTGG GGCCTCA TAGCTAT GGCCTCA GAGTGAT ACAGGAT **GCTACCG** TCGTTGG TAGCTAT GGCCTCA ACAGGAT **GCTACCG** TAGCTAT GGCCTCA **GCTACCG** GGCCTCA

Gibbs Sampling Approach

• How do we get the transition probabilities when we don't know what the motif looks like?

Sampling New Motif Positions

• for each possible starting position, $A_i = j$, compute the likelihood ratio (leaving sequence *i* out of estimates of *p*)

$$LR(j) = \frac{\prod_{k=j}^{j+W-1} p_{c_k, k-j+1}}{\prod_{k=j}^{j+W-1} p_{c_k, 0}}$$

• randomly select a new starting position $A_i = j$ with probability LR(j)

The Phase Shift Problem

- Gibbs sampler can get stuck in a local maximum that corresponds to the correct solution shifted by a few bases
- solution: add a special step to shift the *a* values by the same amount for all sequences. Try different shift amounts and pick one in proportion to its probability score

Convergence of Gibbs

Using Background Knowledge to Bias the Parameters

let's consider two ways in which background knowledge can be exploited in the motif finding process

- 1. accounting for palindromes that are common in DNA binding sites
- 2. using Dirichlet mixture priors to account for biochemical similarity of amino acids

Using Background Knowledge to Bias the Parameters

 Many DNA motifs have a palindromic pattern because they are bound by a protein *homodimer*: a complex consisting of two identical proteins

Representing Palindromes

 parameters in probabilistic models can be "tied" or "shared"

 during motif search, try tying parameters according to palindromic constraint; accept if it increases likelihood test (half as many parameters)

$$\begin{bmatrix} p_{a,0} & p_{a,1} & \cdots & p_{a,W} \\ p_{c,0} & p_{c,1} & \cdots & p_{c,W} \\ p_{g,0} & p_{g,1} & \cdots & p_{g,W} \\ p_{t,0} & p_{t,1} & \cdots & p_{t,W} \end{bmatrix}$$

$$p_{a,1} \equiv p_{t,W} = \frac{n_{a,1} + n_{t,W} + d_{a,1} + d_{t,W}}{\sum_{b} (n_{b,1} + d_{b,1}) + \sum_{b} (n_{b,W} + d_{b,W})}$$

Using Dirichlet Mixture Priors

recall that the EM/Gibbs update the parameters by:

$$p_{c,k} = \frac{n_{c,k} + d_{c,k}}{\sum_{b} (n_{b,k} + d_{b,k})}$$

- Can we use background knowledge to guide our choice of pseudocounts (d_{c,k})?
- suppose we're modeling protein sequences...

Amino Acids

- Can we encode prior knowledge about amino acid properties into the motif finding process?
- there are classes of amino acids that share similar properties

			FOLAR, UNCHARGED		
Alanine Ala A MW = 89	- оос _{Н₃№} >сн	г - СН ₃	OUPS H-	сн ^{- соо-} № Н ₃	Glycine Gly G MW = 75
Valine Val V MW = 117	- оос _{Н₃№} >сн	- сң ^{сн} з снз	но-сн ₂ -	сн ^{соо-}	Serine Ser S MW = 105
Leucine Leu L MW = 131	- оос _{Н₃№} >сн	і - сн ₂ - сң ^{сн} 3 сн ₃	^{ОН} >сн - сн ₃ -сн -	сн ^{<соо-}	Threonine Thr T MWV = 119
Isoleucine Ile I MW = 131	- оос _{Н₃№} >сн	н-сң ^{сн} 3 сн ₂ -сн ₃	HS - CH ₂	- сн < ^{СОО⁻ [№] Н₃}	Cysteine Cys C MW = 121
Phenylalanine Phe F MW = 131	- оос _{Н₃№} >сн	I-СН ₂	но - 🖉 - сн ₂	- сңС ^{соо-}	Tyrosine Tyr Y MW = 181
Tryptophan Trp W MW = 204	- оос н _з ү	- сн ₂ - с	0 C - CH2	-сн ^{соо-}	Asparagine Asp N MW = 132
Methionine Met M MW = 149	- оос _{Н₃№} _сн	- CH ₂ - CH ₂ - S - CH ₃	NH ₂ 0 С - СН ₂ - СН ₂	- сн < ^{соо-}	Glutamine Gln Q MWV = 146
Proline Pro P MW = 115	-000 C		⁺ NH ₃ – CH ₂ – (СН	POLAR BASIC	Lysine Lys K MW = 146
Aspartic acid Asp D MW = 133		с I - СН ₂ - С ⁰	NH ₂ NH ₂ C - NH - (CH	₂)3-сн ^{соо}	Arginine Arg R MW = 174
Glutamine acid Glu E MW = 147	- 00C H ₃ ^N >CH	- сн ₂ - сн ₂ - с	/=Ç-CH₂- HN≫NH +	сн ^{соо-} [№] [№] [№]	Histidine His H MVV = 155

Using Dirichlet Mixture Priors

- since we're estimating multinomial distributions (frequencies of amino acids at each motif position), a natural way to encode prior knowledge is using Dirichlet distributions
- let's consider
 - the Beta distribution
 - the Dirichlet distribution
 - mixtures of Dirichlets

The Beta Distribution

- suppose we're taking a Bayesian approach to estimating the parameter θ of a weighted coin
- the Beta distribution provides an appropriate prior

$$P(\theta) = \frac{\Gamma(\alpha_h + \alpha_t)}{\Gamma(\alpha_h)\Gamma(\alpha_t)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_t - 1}$$

where

- α_h # of "imaginary" heads we have seen already
- α_t # of "imaginary" tails we have seen already.

Beta(19,39)

The Beta Distribution

suppose now we're given a data set *D* in which we observe *D_h* heads and *D_t* tails

$$P(\theta \mid D) = \frac{\Gamma(\alpha + D_h + D_t)}{\Gamma(\alpha_h + D_h)\Gamma(\alpha_t + D_t)} \theta^{\alpha_h + D_h - 1} (1 - \theta)^{\alpha_t + D_t - 1}$$

= Beta(
$$\alpha_h$$
 + D_h , α_t + D_t)

 the posterior distribution is also Beta: we say that the set of Beta distributions is a *conjugate* family for binomial sampling

The Dirichlet Distribution

- for discrete variables with more than two possible values, we can use *Dirichlet* priors
- Dirichlet priors are a *conjugate* family for multinomial data

$$P(\theta) = \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1}$$

• if $P(\theta)$ is Dirichlet $(\alpha_1, \ldots, \alpha_K)$, then $P(\theta|D)$ is Dirichlet $(\alpha_1+D_1, \ldots, \alpha_K+D_K)$, where D_i is the # occurrences of the *i*th value

Mixture of Dirichlets

- we'd like to have Dirichlet distributions characterizing amino acids that tend to be used in certain "roles"
- Brown et al. [ISMB '95] induced a set of Dirichlets from "trusted" protein alignments
 - "large, charged and polar"
 - "polar and mostly negatively charged"
 - "hydrophobic, uncharged, nonpolar"
 - etc.

<section-header>Construction of the optimiser of the opt

Using Dirichlet Mixture Priors

• recall that the EM/Gibbs update the parameters by:

$$p_{c,k} = \frac{n_{c,k} + d_{c,k}}{\sum_{b} (n_{b,k} + d_{b,k})}$$

 we can set the pseudocounts using a *mixture* of Dirichlets:

$$d_{c,k} = \sum_{j} P(\alpha^{(j)} | \mathbf{n}_{k}) \alpha_{c}^{(j)}$$

• where $\alpha^{(j)}$ is the *j*th Dirichlet component

Motif Finding: EM and Gibbs

- these methods compute local, multiple alignments
- both methods try to optimize the likelihood of the sequences
- EM converges to a local maximum
- Gibbs will converge to a global maximum, *in the limit;* in a reasonable amount of time, probably not
- can take advantage of background knowledge by
 - tying parameters
 - Dirichlet priors
- there are many other methods for motif finding
- in practice, motif finders often fail
 - motif "signal" may be weak
 - large search space, many local minima