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Goals for Lecture 

the key concepts to understand are the following 

•! Markov Chain Monte Carlo (MCMC) and Gibbs sampling 

•! Gibbs sampling applied to the motif-finding task 

•! parameter tying 

•! incorporating prior knowledge using Dirichlets and 

Dirichlet mixtures 



Gibbs Sampling: An Alternative to EM 

•! EM can get trapped in local minima 

•! one approach to alleviate this limitation: try different 

(perhaps random) initial parameters 

•! Gibbs sampling exploits randomized search to a 

much greater degree 

•! can view it as a stochastic analog of EM for this task 

•! in theory, Gibbs sampling is less susceptible to local 

minima than EM 

•! [Lawrence et al., Science 1993] 

Gibbs Sampling Approach 

•! in the EM approach we maintained a distribution               

over the possible motif starting points for each 

sequence 

•! in the Gibbs sampling approach, we’ll maintain a 

specific starting point for each sequence       but we’ll 
keep randomly resampling these 
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Gibbs Sampling Algorithm for 

Motif Finding 

given: length parameter W, training set of sequences 

choose random positions for a 

do 

    pick a sequence 

     estimate p given current motif positions a 

           (using all sequences but       )  (predictive update step) 

      sample a new motif position      for        (sampling step) 

until convergence!

return: p, a 
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Markov Chain Monte Carlo (MCMC) 
•! Consider a Markov chain in which, on each time step, a grasshopper 

randomly chooses to stay in its current state, jump one state left or jump 

one state right. 
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•! let P(t)(u) represent the probability of being in state u at time t in the 

random walk 
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Figure from Koller & Friedman, Probabilistic Graphical Models, MIT Press   



The Stationary Distribution 

•! let P(u) represent the probability of being in state u at any 
given time in a random walk on the chain 

•! the stationary distribution is the set of such probabilities for 
all states ! 
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Markov Chain Monte Carlo (MCMC) 
•! we can view the motif finding approach in terms of a Markov chain 

•! each state represents a configuration of the starting positions (ai  values 

for a set of random variables A1 … An)!

•! transitions correspond to changing selected starting positions (and hence 
moving to a new state) 

state u! state v!

! 
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Markov Chain Monte Carlo 

•! for the motif-finding task, the number of states is enormous 

•! key idea: construct Markov chain with stationary 
distribution equal to distribution of interest; use sampling to 
find most probable states 

•! detailed balance: 

! 

P(u)"(v | u) = P(v)" (u | v)
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state u 

probability of 

transition u"v 

•! when detailed balance holds: 

MCMC with Gibbs Sampling 

Gibbs sampling is a special case of MCMC in which 

•! Markov chain transitions involve changing one 

variable at a time 

•! transition probability is conditional probability of the 

changed variable given all others 

•! i.e. we sample the joint distribution of a set of random 

variables                      by iteratively sampling from                                           
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Gibbs Sampling Approach 
•! possible state transitions when first sequence is selected 

Gibbs Sampling Approach 

•! How do we get the transition probabilities when we don’t 

know what the motif looks like? 



Gibbs Sampling Approach 
•! the probability of a state is given by   
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Sampling New Motif Positions 

•! for each possible starting position,             , compute 
the likelihood ratio (leaving sequence i out of 
estimates of p) 

•! randomly select a new starting position            with 
probability 
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The Phase Shift Problem 

•! Gibbs sampler can get stuck in a local maximum that 

corresponds to the correct solution shifted by a few 

bases  

•! solution: add a special step to shift the a values by 

the same amount for all sequences. Try different  
shift amounts and pick one in proportion to its 

probability score 

Convergence of Gibbs 



Using Background Knowledge to 

Bias the Parameters 

let’s consider two ways in which background knowledge 

can be exploited in the motif finding process 

1.! accounting for palindromes that are common in 

DNA binding sites 

2.! using Dirichlet mixture priors to account for 

biochemical similarity of amino acids 

Using Background Knowledge to 

Bias the Parameters 

•! Many DNA motifs have a palindromic pattern 

because they are bound by a protein homodimer: a 

complex consisting of two identical proteins 



Representing Palindromes 

•! parameters in probabilistic models can be “tied” or 

“shared” 

•! during motif search, try tying parameters according to 

palindromic constraint; accept if it increases likelihood 
test (half as many parameters) 
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Updating Tied Parameters 
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Using Dirichlet Mixture Priors 

•! recall that the EM/Gibbs update the parameters by: 

•! Can we use background knowledge to guide our 

choice of pseudocounts ( dc,k )? 

•! suppose we’re modeling protein sequences… 
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Amino Acids 

•! Can we encode prior 

knowledge about 

amino acid properties 
into the motif finding 

process? 

•! there are classes of 

amino acids that 
share similar 

properties 



Using Dirichlet Mixture Priors 

•! since we’re estimating multinomial distributions 

(frequencies of amino acids at each motif position), a 

natural way to encode prior knowledge is using 
Dirichlet distributions 

•! let’s consider 

•! the Beta distribution 

•! the Dirichlet distribution 

•! mixtures of Dirichlets 

The Beta Distribution 
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•! suppose we’re taking a Bayesian approach to 

estimating the parameter ! of a weighted coin 

•! the Beta distribution provides an appropriate prior 

where 

!

# of “imaginary” heads we have seen already 

# of “imaginary” tails we have seen already 

continuous generalization of 

factorial function 



The Beta Distribution 
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•! suppose now we’re given a data set D in which we 

observe Dh heads and Dt tails 

•! the posterior distribution is also Beta: we say that the 

set of Beta distributions is a conjugate family for 

binomial sampling  

The Dirichlet Distribution 

•! for discrete variables with more than two possible 

values, we can use Dirichlet priors 

•! Dirichlet priors are a conjugate family for multinomial 

data 

•! if P(") is Dirichlet(#1, . . . , #K), then P("|D) is 

Dirichlet(#1+D1, . . . , #K+DK), where Di is the # 

occurrences of the ith value 
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Dirichlet Distributions 

probability density (shown on a simplex) of Dirichlet distributions for 

K=3 and various parameter vectors # 
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Mixture of Dirichlets 

•! we’d like to have Dirichlet distributions characterizing 

amino acids that tend to be used in certain “roles” 

•! Brown et al. [ISMB ‘95] induced a set of Dirichlets from 

“trusted” protein alignments 

–! “large, charged and polar” 

–! “polar and mostly negatively charged” 

–! “hydrophobic, uncharged, nonpolar” 

–! etc. 



Trusted Protein Alignments 

•! a trusted protein alignment is one in which known 

protein structures are used to determine which parts of 

the given set of sequences should be aligned 

Using Dirichlet Mixture Priors 

•! recall that the EM/Gibbs update the parameters by: 

•! we can set the pseudocounts using a mixture of 

Dirichlets: 

•! where         is the jth Dirichlet component 
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Using Dirichlet Mixture Priors 
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dc, k = P(" ( j )

j
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probability of jth Dirichlet  

given observed counts  

parameter for character c 

in jth Dirichlet  

•! we don’t have to know which Dirichlet to pick 

•! instead, we’ll hedge our bets, using the observed 

counts to decide how much to weight each Dirichlet  

Motif Finding: EM and Gibbs 

•! these methods compute local, multiple alignments 

•! both methods try to optimize the likelihood of the sequences 

•! EM converges to a local maximum 

•! Gibbs will converge to a global maximum, in the limit; in a reasonable 
amount of time, probably not 

•! can take advantage of background knowledge by 

–! tying parameters 

–! Dirichlet priors 

•! there are many other methods for motif finding 

•! in practice, motif finders often fail 

–! motif “signal” may be weak 

–! large search space, many local minima 


