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Goals for Lecture 

the key concepts to understand are the following 

•! entropy 

•! mutual information 

•! motif logos 

•! using MI to identify CRM elements 



Information Theory Background 

•! consider a problem in which you are using a code to 
communicate information to a receiver 

•! example: as bikes go past, you are communicating the 
manufacturer of each bike  

Information Theory Background 

•! suppose there are only four types of bikes 

•! we could use the following code 
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•! expected number of bits we have to communicate:  
2 bits/bike 

Trek 

Specialized 

Cervelo 

Serrota 

type code 



Information Theory Background 

•! we can do better if the bike types aren’t equiprobable 

•! optimal code uses                   bits for event with 
probability 
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•! expected number of bits we have to communicate:  
1.75 bits/bike 

Entropy 

•! entropy is a measure of uncertainty associated with a 
random variable 

•! defined as the expected number of bits required to 
communicate the value of the variable 
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•! height of logo at a given position determined by decrease 

in entropy (from maximum possible) 
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Sequence Logos 

•! based on entropy (H) of a random variable (C) representing 

distribution of character states at each position 

# of characters in alphabet 

•! height of each character c is proportional to P(c) 

Mutual Information 
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I(M;C) = H (M )"H (M |C)

•! mutual information quantifies how much knowing the 
value of one variable tells about the value of another 

entropy of M 

entropy of M 

conditioned on C 



FIRE 
Elemento et al., Molecular Cell 2007 

•! Given a set of sequences 
grouped into clusters 

•! Find motifs, and relationships, 
that have high mutual 
information with the clusters 

•! (also can do this when 
sequences have continuous 
values instead of cluster labels) 

Mutual Information in FIRE 

•! we can compute the mutual information between a motif 
and the clusters as follows 
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I(M;C) = P(m,c) log2
P(m,c)

P(m)P(c)
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| C |
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m=0, 1 represent absence/presence of motif 

c ranges over the cluster labels 



Finding Motifs in FIRE 

•! motifs are represented by regular expressions; initially each motif is 
represented by a strict k-mer (e.g. TCCGTAC) 

1.! test all k-mers (k=7 by default) to see which have significant mutual 
information with the cluster label 

2.! filter k-mers using a significance test 

3.! generalize each k-mer into a motif 

4.! filter motifs using a significance test 

Key Step in Generalizing a Motif in FIRE 

•! randomly pick a position in the motif 

•! generalize in all ways consistent with current value at position 

•! score each by computing mutual information 

•! retain the best generalization 

TCCGTAC 

TCC[CG]TAC 

TCC[AG]TAC TCC[GT]TAC 

TCC[CGT]TAC TCC[ACG]TAC 

TCC[AGT]TAC 

TCC[ACGT]TAC 



Generalizing a Motif in FIRE 

given: k-mer, n 

best ! null 

repeat n times 

     motif ! k-mer 

     repeat 

          motif ! GeneralizePosition(motif)    // shown on previous slide 

     until convergence (no improvement at any position) 

     if score(motif) > score(best) 

            best ! motif 

return: best 

Generalizing a Motif in FIRE: Example 

Figure from Elemento et al.  Molecular Cell 2007 



Characterizing Predicted Motifs in FIRE 

•! mutual information is also used to assess various 
properties of found motifs 

–! orientation bias 

–! position bias 

–! interaction with another motif 

Using MI to Determine Orientation Bias 

! 

I(S;C) C  indicates cluster 

S=1 indicates motif present on transcribed strand 

S=0 otherwise (not present or not on transcribed strand) 
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also compute MI where S=1 

indicates motif present on 

complementary strand 



Using MI to Determine Position Bias 
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I(P;O) P ranges over position bins 

O=0, 1 indicates clusters in which the motif is 

overrepresented or not 
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this calculation 

Using MI to Determine Motif Interactions 
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Discussion of CRM Finding Methods 

•! Noto & Craven 

–! HMM structure search to find CRM model 

–! search operators apply to compact, logical representation 
instead of directly to HMM 

–! employs generalized (a.k.a. semi-Markov) HMM approach to 
model background sequence lengths 

•! FIRE 

–! mutual information used to identify motifs and relationships 
among them 

–! motif search is based on generalizing informative k-mers 

•! in contrast to many motif-finding approaches, both CRM methods 
take advantage of negative sequences 

•! FIRE returns all informative motifs/relationships found, whereas the 
Noto & Craven approach returns single discriminative model 


