Information Extraction from Biomedical Text

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Mark Craven
craven@biostat.wisc.edu
February 2008

Some Important Text-Mining Problems

hypothesis generation

Given: biomedical objects/classes of interest (e.g. dieases & dietary factors)

Do: identify interesting, implied relationships among the objects

• experiment annotation

Given: a set of genes/proteins exhibiting common behavior in an experiment

Do: identify commonalities among genes/proteins in the set

• information extraction

Given: classes, relations of interest

Do: recognize and extract instances of the classes and relations from documents

Some Important Text-Mining Problems

document classification

Given: defined classes of interest

Do: assign documents to the relevant classes

ad-hoc retrievalGiven: a query

Do: return relevant documents/passages

- improving the accuracy of other inference tasks
 - querying with PSI-BLAST [Chang et al.]
 - predicting subcellular localization of proteins[Hoglund et al.]
 - etc.

The Information Extraction Task: Named Entity Recognition

Analysis of Yeast PRP20 Mutations and Functional Complementation by the Human Homologue RCC1, a Protein Involved in the Control of Chromosome Condensation

Fleischmann M, Clark M, Forrester W, Wickens M, Nishimoto T, Aebi M

Mutations in the PRP20 gene of yeast show a pleitropic phenotype, in which both mRNA metabolism and nuclear structure are affected. SRM1 mutants, defective in the same gene, influence the signal transduction pathway for the pheromone response . . .

By **immunofluorescence microscopy** the **PRP20** protein was localized in the **nucleus**. Expression of the **RCC1** protein can complement the temperature-sensitive phenotype of **PRP20** mutants, demonstrating the functional similarity of the yeast and mammalian proteins

- proteins
- small molecules
- methods
- cellular compartments

The Information Extraction Task: Relation Extraction

Analysis of Yeast PRP20 Mutations and Functional Complementation by the Human Homologue RCC1, a Protein Involved in the Control of Chromosome Condensation

Fleischmann M, Clark M, Forrester W, Wickens M, Nishimoto T, Aebi M

Mutations in the PRP20 gene of yeast show a pleitropic phenotype, in which both mRNA metabolism and nuclear structure are affected. SRM1 mutants, defective in the same gene, influence the signal transduction pathway for the pheromone response . . .

By immunofluorescence microscopy the <u>PRP20</u> protein was localized in the <u>nucleus</u>. Expression of the RCC1 protein can complement the temperature-sensitive phenotype of PRP20 mutants, demonstrating the functional similarity of the yeast and mammalian proteins

subcellular-localization(PRP20, nucleus)

Motivation for Information Extraction

- motivation for <u>named entity recognition</u>
 - better indexing of biomedical articles
 - assisting in relation extraction
- motivation for relation extraction
 - assisting in the construction and updating of databases
 - providing structured summaries for queries
 - What is known about protein X (subcellular & tissue localization, associations with diseases, interactions with drugs, ...)?
 - assisting scientific discovery by detecting previously unknown relationships, annotating experimental data

How Do We Get IE Models?

- 1. encode them by hand
- 2. learn them from training data

Why Named Entity Recognition is Hard

• these are all gene names

CAT1

lacZ

3-fucosyl-N-acetyl-lactosamine

MAP kinase

mitogen activated protein kinase

mitogen activated protein kinase kinase

mitogen activated protein kinase kinase kinase

hairless

sonic hedgehog

• in some contexts these names refer to the *gene*, in other contexts they refer to the *protein* product, in other contexts its ambiguous

Why Named Entity Recognition is Hard

- they may be referenced conjunctions and disjunctions human B- or T-cell lines ⇒
 human B-cell line human T-cell line
- these all refer to the same thing

NF-kappaB NF KappaB NF-kappa B (NF)-kappaB

there may be references to gene/protein families
 OLE1-4 ⇒
 OLE1 OLE2 OLE3 OLE4

Sources of Evidence for Biomedical NER

- orthographic/morphological: spelling, punctuation, capitalization
 e.g. alphanumeric? contains dashes? capitalized? ends in "ase"
 Src, SH3, p54, SAP, hexokinase
- lexical: specific words and word classes
 kinase, ____ factor
- syntactic: how words are composed into grammatical units
 binds to _____, regulated by _____, ____ phosphorylates

Relation Extraction: Representing Sentence Structure in Learned Models

- [Skounakis, Ray & Craven, *IJCAI* '03]
- hidden Markov models (HMMs) have proven to be a good approach for learning IE models
 - can naturally handle relations
 - scale well to long sequences, large data sets
 - provide estimates of uncertainty
 - provide good predictive accuracy in practice
- typically these HMMs have a "flat" structure, and are able to represent relatively little about grammatical structure
- how can we provide HMMs with more information about sentence structure?

Representing Sentences as Sequences of Tokens

•	we can represent sentences as sequences of tokens		Our results
•	for training sequences we also have labels associated with tokens		suggest that protein
		PROTEIN	Bed1
			is
			found
			in
			the
		LOCATION	ER

Representing Sentences

• we first process sentences by analyzing them with a shallow parser (Sundance, [Riloff et al., 98])

Representing Sentences as Nested Sequences of Tokens

NP_segment	adjective	Our
	noun	results
VP_segment	verb	suggest
c_m	c_m	that
NP_segment: PROTEIN	noun	protein
	unknown: PROTEIN	Bed1
VP_segment	сор	is
	verb	found
prep	prep	in
NP_segment: LOCATION	art	the
	unknown: LOCATION	ER

Hierarchical HMMs for IE

Word-Level HMMs

 models for phrase-level states that don't represent a domain of the target relation

 models for phrase-level states that represent <u>one</u> domain of the target relation

Explaining a Sequence

Incorporating a Null Model

• *positive* model trained on sentences labeled with target relations

• *null* model trained on other sentences

Discriminative Training

• In generative training, estimate parameters $\hat{\theta}$ such that

$$\hat{\theta} = \arg\max_{\theta} \prod_{i} \Pr(c_{i}, s_{i} | \theta)$$

where S_i is the observable sequence and C_i is the sequence of labels for the i th instance

• We use a discriminative training algorithm [Krogh '94]

$$\hat{\theta} = \arg\max_{\theta} \prod_{i} \Pr(c_i \mid s_i, \theta)$$

Discriminative Training

Krogh's method provides an on-line, update rule:

$$\theta_{j}^{new} = N(\theta_{j}^{old} + \eta(m_{j}^{i} - n_{j}^{i}))$$

 m_j^i : expected number of times $\, heta_j \,$ used by i th sentence on $\it correct \,$ paths

 n_j^i : expected number of times θ_j used by i th sentence on **all** paths

N: normalizing factor

Null Model & Discriminative Training

Extract a Relation Instance If...

Representing More Local Context

- we can have the word-level states represent more about the local context of each emission
- partition sentence into overlapping trigrams

"... the/ART Bed1/UNK protein/N is/COP located/V ..."

Representing More Local Context

• states emit trigrams $t = \langle w_{-1}, w_0, w_{+1}, p_{-1}, p_0, p_{+1} \rangle$ with probability:

$$Pr(t) = Pr(w_{-1}) Pr(w_0) Pr(w_{+1}) Pr(p_{-1}) Pr(p_0) Pr(p_{+1})$$

• note the independence assumption above: we compensate for this naïve assumption by using a *discriminative* training method [Krogh '94] to learn parameters

Experimental Evaluation

- <u>hypothesis</u>: we get more accurate models by using a richer representation of sentence structure in HMMs
- compare predictive accuracy of various types of models/representations
 - hierarchical w/context features
 - hierarchical
 - phrases only
 - tokens w/part of speech
 - tokens only
- 5-fold cross validation on 3 data sets

Data Sets for Learning to Extract Relations

- subcellular_localization(PROTEIN, LOCATION)
 - tuples from YPD database
 - 769 positive, 6193 negative sentences from MEDLINE abstracts
 - 939 tuples (402 distinct)
- disorder_association(GENE, DISEASE)
 - tuples from OMIM database
 - 829 positive, 11685 negative sentences
 - 852 tuples (143 distinct)
- protein_protein_interaction(PROTEIN, PROTEIN)
 - tuples from MIPS database
 - 5446 positive, 41377 negative
 - 8088 tuples (819 distinct)

Extraction Accuracy (protein-location)

Extraction Accuracy (protein-protein interactions)

