### Lecture 10 -Learning Motif Models with Gibbs sampling

Colin Dewey February 20, 2008

### **EM** Theory

- Estimate parameters for models with latent (hidden) states
- Model: X (observed), Z (latent), Θ (params)
- Want to maximize  $\log P(X|\Theta)$
- Much easier to maximize  $\log P(X,Z|\Theta)$  but don't know Z
- Instead, maximize expected value of log  $P(X,Z|\Theta)$
- Alternate expectation (Z) and maximization ( $\Theta$ ) computations
- Theorem: this also maximizes (locally)  $log P(X | \Theta)$

#### Gibbs Sampling: An Alternative to EM

- a general procedure for sampling from the joint distribution of a set of random variables
- Iteratively sample from

$$\Pr(X_j|X_1,\ldots,X_{j-1},X_{j+1}\ldots X_n)$$
 for each j

- application to motif finding: Lawrence et al. 1993
- can view it as a stochastic analog of EM for this task
- less susceptible to local minima than EM

 $\Pr(X_1,\ldots,X_n)$ 

### Gibbs Sampling Approach

- in the EM approach we maintained a distribution  $Z_i$  over the possible motif starting points for each sequence
- in the Gibbs sampling approach, we'll maintain a specific starting point  $a_i$  for each sequence but we'll keep randomly resampling these

#### Gibbs Sampling Approach

```
given: length parameter W, training set of sequences
   choose random positions for a
   do
      pick a sequence X_i
       estimate p given current motif positions a (update step)
           (using all sequences but X_i)
       sample a new motif position a_i for X_i (sampling step)
   until convergence
return: p, a
```

### Sampling New Motif Positions

• for each possible starting position,  $a_i = j$ , compute a weight

$$A_{j} = \frac{\prod_{k=j}^{j+W-1} p_{c_{k},k-j+1}}{\prod_{k=j}^{j+W-1} p_{c_{k},0}}$$

• randomly select a new starting position according to these weights  $a_i$ 

#### The Phase Shift Problem

- Gibbs sampler can get stuck in a local maxima that corresponds to the correct solution shifted by a few bases
- Solution: add a special step to shift the a values by the same amount for all sequences.
   Try different shift amounts and pick one in proportion to its probability score.

#### Convergence of Gibbs



#### Markov Chain Monte Carlo

- Technique for sampling from probability distribution
- Construct Markov chain with stationary distribution equal to distribution of interest
- ullet Transition probability:  $au(y|x) \ x o y$
- Detailed balance:  $\mathbb{P}(x)\tau(y|x) = \mathbb{P}(y)\tau(x|y)$
- If detailed balance, then:  $\frac{1}{N}\lim_{N\to\infty}C(y_i=x)=\mathbb{P}(x)$

# MCMC with Gibbs sampling

- Markov chain transitions by changing one variable at a time
- Transition probability is conditional distribution of the variable given all others
- Show that this obeys detailed balance

$$\mathbb{P}(X_1, X_2, \dots, X_N)$$

$$\tau(X_i^{t+1}|X_i^t) = \mathbb{P}(X_i^{t+1}|X_1,\dots,X_{i-1},X_{i+1},\dots,X_N)$$

#### EM and Gibbs

- these methods are computing a local, multiple alignment
- both methods try to optimize the likelihood of the sequences
- EM converges to a local maximum
- Gibbs will converge to a global maximum, in the limit
- MEME can take advantage of background knowledge by
  - tying parameters
  - Dirichlet priors

### Example: The Data

- Hidden motif of width 7 in 4 sequences of length 10
- Each motif occurrence differs from consensus (GATTACA) in two positions

ACCATGACAG
GAGTATACCT
CATGCTTACT
CGGAATGCAT

#### Initialization

Choose initial positions of motif at random

ACCATGACAG
GAGTATACCT
CATGCTTACT
QGGAATGCAT

### Predictive update step

 Update profile matrix based on motif and background frequencies and pseudocounts



### Predictive update step

Calculate profile matrix from frequencies and pseudocounts

|   | 0 |   | 2 | 3 | 4 | 5                                                                                                             | 6 | 7 |
|---|---|---|---|---|---|---------------------------------------------------------------------------------------------------------------|---|---|
| Α | 3 | 0 | _ | _ | 2 | _                                                                                                             | 0 | 0 |
| C | 2 | 0 | - | 0 | 0 | _                                                                                                             | 2 | I |
| G | 2 | 2 | Ι | 0 | 0 | $a = \frac{c_{2,0}}{\sum_{i \neq j} l_{i,j}^{2}} \frac{1}{2(2) + 2} - \frac{2 + 6.5}{2(2) + 2} - \frac{2}{2}$ | I | 0 |
|   | 2 | I | 0 | 2 |   | I                                                                                                             | 0 | 2 |

$$\begin{split} p_{0,\mathrm{A}} &= \frac{c_{0,\mathrm{A}} + b_{\mathrm{A}}}{\sum_{i \neq 1} (\ell_i - W) + B} = \frac{3 + 0.5}{3(3) + 2} = \frac{7}{22} \\ p_{0,\mathrm{C}} &= \frac{c_{0,\mathrm{C}} + b_{\mathrm{C}}}{\sum_{i \neq 1} (\ell_i - W) + B} = \frac{2 + 0.5}{3(3) + 2} = \frac{5}{22} \\ p_{0,\mathrm{G}} &= \frac{c_{0,\mathrm{G}} + b_{\mathrm{G}}}{\sum_{i \neq 1} (\ell_i - W) + B} = \frac{2 + 0.5}{3(3) + 2} = \frac{5}{22} \\ p_{0,\mathrm{T}} &= \frac{c_{0,\mathrm{T}} + b_{\mathrm{T}}}{\sum_{i \neq 1} (\ell_i - W) + B} = \frac{2 + 0.5}{3(3) + 2} = \frac{5}{22} \end{split}$$

| •                    | •                                               |                           |     |
|----------------------|-------------------------------------------------|---------------------------|-----|
| $p_{1,\mathtt{A}} =$ | $\frac{c_{1,\mathtt{A}}+b_{\mathtt{A}}}{N-1+B}$ | $\frac{0+0.5}{4-1+2} =$   | 0.1 |
| $p_{1,c} =$          | $\frac{c_{1,\mathtt{C}}+b_{\mathtt{C}}}{N-1+B}$ | 4 - 1 + 2                 | 0.1 |
| $p_{1,\mathtt{G}} =$ | $\frac{c_{1,G} + b_{G}}{N - 1 + B}$             | $= \frac{2+0.5}{4-1+2} =$ | 0.5 |
| $p_{1,\mathtt{T}} =$ | $\frac{c_{1,T} + b_{T}}{N - 1 + B}$             | $= \frac{1+0.5}{4-1+2} =$ | 0.3 |

|   | 0   |     | 2   | 3   | 4   | 5   | 6   | 7   |
|---|-----|-----|-----|-----|-----|-----|-----|-----|
| Α | 0.3 | 0.1 | 0.3 | 0.3 | 0.5 | 0.3 | 0.1 | 0.1 |
| U | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | 0.3 | 0.5 | 0.3 |
| G | 0.2 | 0.5 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 |
|   | 0.2 | 0.3 | 0.1 | 0.5 | 0.3 | 0.3 | 0.1 | 0.5 |

### Sampling step

 For each possible motif start position, calculate ratio of likelihood of next W positions from motif vs. background

|    | I    | 2    | 3    | 4     |  |
|----|------|------|------|-------|--|
| Ai | 0.16 | 0.13 | 0.26 | 0.017 |  |

$$A_1 = \frac{p_{1,\mathtt{A}} \cdot p_{2,\mathtt{C}} \cdot p_{3,\mathtt{C}} \cdot p_{4,\mathtt{A}} \cdot p_{5,\mathtt{T}} \cdot p_{6,\mathtt{G}} \cdot p_{7,\mathtt{A}}}{p_{0,\mathtt{A}} \cdot p_{0,\mathtt{C}} \cdot p_{0,\mathtt{C}} \cdot p_{0,\mathtt{A}} \cdot p_{0,\mathtt{T}} \cdot p_{0,\mathtt{G}} \cdot p_{0,\mathtt{A}}} \approx \frac{0.1 \cdot 0.3 \cdot 0.1 \cdot 0.5 \cdot 0.3 \cdot 0.3 \cdot 0.1}{0.31 \cdot 0.23 \cdot 0.23 \cdot 0.31 \cdot 0.23 \cdot 0.23 \cdot 0.31} \approx 0.16 \cdot 0.16$$



|   | 0   |     | 2   | 3   | 4   | 5   | 6   | 7   |
|---|-----|-----|-----|-----|-----|-----|-----|-----|
| Α | 0.3 | 0.1 | 0.3 | 0.3 | 0.5 | 0.3 | 0.1 | 0.1 |
| С | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | 0.3 | 0.5 | 0.3 |
| G | 0.2 | 0.5 | 0.3 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 |
| T | 0.2 | 0.3 | 0.1 | 0.5 | 0.3 | 0.3 | 0.1 | 0.5 |

### Sampling step

• Sample new position i in chosen sequence based on  $A_i$ 



#### Calculate likelihood

- Calculate likelihood (or some related value) after each iteration
- Iterate:
  - choose sequence
  - predictive update
  - sample new motif position in sequence
- After many iterations, choose motif positions and corresponding profile matrix

#### Inferring cis Regulatory Modules (CRMs)





a task of growing interest: infer models of CRMs that regulate certain sets of genes

## A Representation for CRMs [Noto & Craven]

