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EM Theory

• Estimate parameters for models with latent (hidden) states

• Model: X (observed), Z (latent), Θ (params)

• Want to maximize log P(X| Θ)

• Much easier to maximize log P(X,Z| Θ) but don’t know Z

• Instead, maximize expected value of log P(X,Z| Θ)

• Alternate expectation (Z) and maximization (Θ) 
computations

• Theorem:  this also maximizes (locally) log P(X | Θ)
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Gibbs Sampling: An Alternative to EM

• a general procedure for sampling from the joint 
distribution of a set of random variables                              

• Iteratively sample from                                                   

for each j

• application to motif finding: Lawrence et al. 
1993

• can view it as a stochastic analog of EM for this 
task

• less susceptible to local minima than EM

Pr(X1, . . . , Xn)

Pr(Xj |X1, . . . , Xj−1, Xj+1 . . . Xn)
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Gibbs Sampling Approach

• in the EM approach we maintained a 
distribution        over the possible motif 
starting points for each sequence

• in the Gibbs sampling approach, we’ll maintain 
a specific starting point      for each sequence       
but we’ll keep randomly resampling these
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Gibbs Sampling Approach

given: length parameter W, training set of sequences

choose random positions for a

do

    pick a sequence

     estimate p given current motif positions a  (update step)

           (using all sequences but       )

      sample a new motif position      for        (sampling step)

until convergence

return: p, a
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Sampling New Motif Positions

• for each possible starting position,           , 
compute a weight

• randomly select a new starting position       
according to these weights
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The Phase Shift Problem

• Gibbs sampler can get stuck in a local maxima 
that corresponds to the correct solution 
shifted by a few bases 

• Solution: add a special step to shift the a 
values by the same amount for all sequences. 
Try different shift amounts and pick one in 
proportion to its probability score.
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Convergence of Gibbs

8Thursday, February 21, 2008



Markov Chain Monte Carlo

• Technique for sampling from probability 
distribution

• Construct Markov chain with stationary 
distribution equal to distribution of interest

• Transition probability:

• Detailed balance: 

• If detailed balance, then: 

τ(y|x)
P(x)τ(y|x) = P(y)τ(x|y)

x→ y

1
N

lim
N→∞

C(yi = x) = P(x)
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MCMC with Gibbs 
sampling

• Markov chain transitions by changing one 
variable at a time

• Transition probability is conditional 
distribution of the variable given all others

• Show that this obeys detailed balance

P(X1, X2, . . . , XN )
τ(Xt+1

i |Xt
i ) = P(Xt+1

i |X1, . . . , Xi−1, Xi+1, . . . , XN )
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EM and Gibbs

• these methods are computing a local, multiple alignment

• both methods try to optimize the likelihood of the 
sequences

• EM converges to a local maximum

• Gibbs will converge to a global maximum, in the limit

• MEME can take advantage of background knowledge by

• tying parameters

• Dirichlet priors
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ACCATGACAG
GAGTATACCT
CATGCTTACT
CGGAATGCAT

Example: The Data

• Hidden motif of width 7 in 4 sequences of 
length 10

• Each motif occurrence differs from consensus 
(GATTACA) in two positions
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Initialization

• Choose initial positions of motif at random

ACCATGACAG
GAGTATACCT
CATGCTTACT
CGGAATGCAT
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Predictive update step
• Update profile matrix based on motif and 

background frequencies and pseudocounts

ACCATGACAG
GAGTATACCT
CATGCTTACT
CGGAATGCAT

0 1 2 3 4 5 6 7
A
C
G
T

3 0 1 1 2 1 0 0

2 0 1 0 0 1 2 1

2 2 1 0 0 0 1 0

2 1 0 2 1 1 0 2

background motif position 4

exclude
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• Calculate profile matrix from frequencies and pseudocounts

Predictive update step

p0,G =
c0,G + bG∑

i !=1(!i −W ) + B
=

2 + 0.5
3(3) + 2

=
5
22

0 1 2 3 4 5 6 7
A
C
G
T

3 0 1 1 2 1 0 0

2 0 1 0 0 1 2 1

2 2 1 0 0 0 1 0

2 1 0 2 1 1 0 2

0 1 2 3 4 5 6 7
A
C
G
T

0.3 0.1 0.3 0.3 0.5 0.3 0.1 0.1

0.2 0.1 0.3 0.1 0.1 0.3 0.5 0.3

0.2 0.5 0.3 0.1 0.1 0.1 0.3 0.1

0.2 0.3 0.1 0.5 0.3 0.3 0.1 0.5

p1,C =
c1,C + bC

N − 1 + B
=

0 + 0.5
4− 1 + 2

= 0.1

p1,A =
c1,A + bA

N − 1 + B
=

0 + 0.5
4− 1 + 2

= 0.1

p1,G =
c1,G + bG

N − 1 + B
=

2 + 0.5
4− 1 + 2

= 0.5

p1,T =
c1,T + bT

N − 1 + B
=

1 + 0.5
4− 1 + 2

= 0.3

p0,T =
c0,T + bT∑

i !=1(!i −W ) + B
=

2 + 0.5
3(3) + 2

=
5
22

p0,A =
c0,A + bA∑

i !=1(!i −W ) + B
=

3 + 0.5
3(3) + 2

=
7
22

p0,C =
c0,C + bC∑

i !=1(!i −W ) + B
=

2 + 0.5
3(3) + 2

=
5
22

p0,G =
c0,G + bG∑

i !=1(!i −W ) + B
=

2 + 0.5
3(3) + 2

=
5
22
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Sampling step
• For each possible motif start position, calculate ratio of 

likelihood of next W positions from motif vs. background

0 1 2 3 4 5 6 7
A
C
G
T

0.3 0.1 0.3 0.3 0.5 0.3 0.1 0.1

0.2 0.1 0.3 0.1 0.1 0.3 0.5 0.3

0.2 0.5 0.3 0.1 0.1 0.1 0.3 0.1

0.2 0.3 0.1 0.5 0.3 0.3 0.1 0.5

ACCATGACAG

1 2 3 4

Ai 0.16 0.13 0.26 0.017

A1 =
p1,A · p2,C · p3,C · p4,A · p5,T · p6,G · p7,A

p0,A · p0,C · p0,C · p0,A · p0,T · p0,G · p0,A
≈ 0.1 · 0.3 · 0.1 · 0.5 · 0.3 · 0.3 · 0.1

0.31 · 0.23 · 0.23 · 0.31 · 0.23 · 0.23 · 0.31
≈ 0.16
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Sampling step

• Sample new position i in chosen sequence based on Ai

ACCATGACAG

1 2 3 4

Ai 0.16 0.13 0.26 0.017

1 2 3 4

Ai 0.28 0.23 0.46 0.03

normalize

draw random sample 
from distributiona3 = 2
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Calculate likelihood

• Calculate likelihood (or some related value) 
after each iteration

• Iterate:

• choose sequence

• predictive update

• sample new motif position in sequence

• After many iterations, choose motif positions 
and corresponding profile matrix 
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Inferring cis Regulatory Modules (CRMs)

RNAP

DN
A

arrangement of these 
binding sites forms a 
cis-regulatory module

mRNA

DNA

a task of growing interest: infer 
models of CRMs that regulate 

certain sets of genes
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DNA

Transcription

5. Order Constraints

upstream

247bp 43bp

3. Distance Constraints
upper-bounds on the distance

between binding sites

tcx

4. Strand Constraints

1. Multiple Binding Sites
a collection of cooperative transcription

factor binding sites

or

2. Multiple Motifs per Binding Site

6. Repressor Motifs
binding of factors that

deactivate a CRM 

A Representation for CRMs 
[Noto & Craven]
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