BMI/CS 776 Spring 2008 Homework #5

Prof. Colin Dewey

Due Tuesday, April 15th, 2008 by 11:59pm

The goal of this assignment is to become familiar with two pattern matching techniques: *suffix trees* and *locality-sensitive hashing*. You have three options for turning in this homework:

- Copy all relevant files to the directory: /u/medinfo/handin/bmi776/hw5/USERNAME where USERNAME is your account name for the BMI network.
- Send it to me by email
- Turn it in on paper during class on Tuesday, April 15 or put it in my mailbox by 5pm on that day.
- 1. Draw the suffix tree for the DNA sequence CACTACGTACG. Include the suffix links from internal nodes as used in Ukkonen's suffix tree construction algorithm.
- 2. The algorithm described in class for finding all occurrences of a query string Q in a suffix tree \mathcal{T} takes time O(n+k), where n is the length of Q and k is the number of occurrences of Q in the string encoded by \mathcal{T} . Write an algorithm for preprocessing the suffix tree \mathcal{T} in O(m) time (where m is the length of the database string) such that finding a single occurrence of Q in \mathcal{T} takes O(n) time (hint: label each internal node of the tree with a convenient value).
- 3. Give updated bounds for the false negative (ρ_{fn}) and false positive (ρ_{fp}) rates for LSH-ALL-PAIRS if we form hash functions by picking k of d positions at random without replacement.
- 4. Let S be the set of all bit strings of length ℓ . For $x \in S$, let $ones(x) = \{i : x_i = 1\}$, i.e., the set of all positions in x that are equal to one. We define the set resemblance, s(x,y), for $x,y \in S$ as $s(x,y) = \frac{|ones(x) \cap ones(y)|}{|ones(x) \cup ones(y)|}$, i.e., the fraction of positions that are equal to one in both strings out of all positions that are equal to one in either of the

strings. For the case of $x=0^\ell$ (the all-zero string), define s(x,x)=1. From this we can define a distance function d(x,y)=1-s(x,y). A great locality-sensitive hash function for this distance measure is called minhash. Given a random permutation, π , of positions $\{1,2,\ldots,\ell\}$, $minhash_{\pi}(x)=argmin_{i\in ones(x)}(\pi(i))$, i.e., the index of the first non-zero position in x in the position ordering given by π . Show that that $\mathbb{P}_{\pi}[minhash_{\pi}(x)=minhash_{\pi}(y)]=1-d(x,y)=s(x,y), \forall x,y\in S$.