
BMI/CS 776
Lecture #18

Pattern matching -
Locality-sensitive hashing

Colin Dewey
2007.03.22

1

Exact vs inexact matching

• Exact matching

• Good for highly-similar sequences, or for
locating highly-conserved short substrings

• As sequences diverge, exact matching must use
shorter seeds, resulting in low specificity

• Can be done very efficiently - suffix trees/arrays

• Inexact matching

• Better for diverged sequences

• Much harder than exact matching

2

Inexact matching problem

• Given a set S of sequences

• Find all pairs of d-mers that differ in at most
r positions

• Or, find all pairs of d-mers that have edit
distance less than ε

today

3

Locality-sensitive hashing

• Problem:

• Given set of high-dimensional data points

• Want to find all similar points, or find closest
points to a given query point

• Locality-sensitive hashing (Indyk & Motwani, 1998):

• Hashing scheme with similar points more likely
to hash together

• Randomized algorithm

4

(r, ε)-Neighbor problem

• Given:

• P: set of elements from set S

• D: distance function on set S

• q: query element

• Determine whether:

• exists p in P such that D(q,p) ≤ r

• return a point p’ such that D(q, p’) < r(1 + ε)

• or all p in P have D(q,p) ≥ r(1 + ε)
5

(r1,r2,p1,p2)-sensitive
hash families

• Useful families have p1 > p2 and r1 < r2

• The closer the points, the higher the
chance of collision via the hash function

Definition 1 A family H of functions h : S → U is (r1, r2, p1, p2)-sensitive for
D(·, ·) if ∀p, q ∈ S

1. if p ∈ B(q, r1) then PH[h(q) = h(p)] ≥ p1

2. if p /∈ B(q, r2) then PH[h(q) = h(p)] ≤ p2

where B(q, r) = {p : D(p, q) ≤ r}

6

(r1,r2,p1,p2)-sensitive
hash family example

Hd′ = {hi : hi((b1, . . . , bd′)) = bi, for i = 1, . . . , d′}

D(p, q) = dH(p, q) (Hamming distance)

S = Hd′
(d′-dimensional Hamming cube)

Hd′ is
(

r, r(1 + ε), 1− r

d′ , 1−
r(1 + ε)

d′

)
-sensitive, ∀r, ε

7

LSH functions
Choose l functions g1, . . . , gl, where g are of the form:

gi(p) = (hi1(p), hi2(p), . . . , hik(p))

where hi1 , . . . , hik chosen at random from H with replacement

8

LSH preprocessing

(Gionis, 1999)
9

LSH approximate
nearest neighbor

(Gionis, 1999)
10

LSH (r, ε)-Neighbor
correctness conditions

P ′ = {p′ : p′ ∈ P, d(q, p′) > r2 = r(1 + ε)}

LSH algorithm solves (r, ε)-Neighbor problem if both:

P1 If there exists p∗ s.t. p∗ ∈ B(q, r1),
then gj(p∗) = gj(q) for some j = 1, . . . , l

P2 The total number of hash table blocks
referenced by q and containing only points from P ′

is less than cl, for some constant c.

11

LSH (r, ε)-Neighbor
correctness

Theorem 1 For a (r1, r2, p1, p2)-sensitive family H,
if we set ρ = ln 1/p1

ln 1/p2 , k = log1/p2
(n/B) and l = (n

B)ρ,
then P1 and P2 hold with probability at least 1

2 −
1
e > 0.132

For proof, see (Gionis, 1999)

“constant probability” - does not change with input size n

12

Randomized algorithms

• Given an algorithm A1 that succeeds with
probability p1

• Algorithm A2, which runs A1 t times,
succeeds with probability p2 = 1 - (1 - p1)t

• Can make p2 as big as we like

• For t > 32, LSH (r, ε)-Neighbor succeeds
with probability > 0.99

13

Complexity results

• LSH (r, ε)-Neighbor used to solve ε-Nearest
Neighbor Search (ε-NNS) problem

• O(dn1/(1+ ε)) query time (sublinear!) for all ε

• O(n1+1/(1+ ε) + nd) preprocessing time

14

LSH for sequence
comparison

• Buhler, 2001

• Points are d-mers over some alphabet

• Comparing all d-mers at once, not just one
query d-mer against all others

• Hash function f:

• pick k indices i1,...,ik from {1,...,d}

• f(s) = (s[i1], s[i2], ..., s[ik])

15

(r1,r2,p1,p2)-sensitive
property

• If s1 and s2 differ by at most r1 = r positions
then,

• If not, s1 and s2 differ by at least r2 = r + 1
positions and

P[f(s1) = f(s2)] ≥ p1 =
(
1− r

d

)k

P[f(s1) = f(s2)] ≤ p2 =
(

1− r + 1
d

)k

16

LSH-ALL-PAIRS

• Input: Set C of sequences of total length N

• Output: All pairs of d-mers that differ by no more
than r substitutions

• Algorithm: Iterate times:

• Choose random LSH function (choose k indices)

• Partition d-mers by hash value

• In each partition, compare all d-mers, output those
that differ in no more than r positions

!

17

False-negative rate

• Typically set and k such that expected
false negative rate is sufficiently small (e.g.,
0.05)

!

ρfn ≤
[
1−

(
1− r

d

)k
]!

k ≤
log

(
1− ρ1/!

fn

)

log
(
1− r

d

)

18

False positive rate

• False positive rate: fraction of d-mers that
we compare (because they hash to the same
value) that are not similar enough

• For two unrelated random d-mers, assume
chance of match at any position is Φ

• Chance that unrelated d-mers differ by t
substitutions:

• False positive rate:

β1−φ,d(t) =
(

d

t

)
(1− φ)tφd−t

ρfp = "
d∑

t=r+1

β1−φ,d(t)
(

1− t

d

)k

19

TradeoffsJ.Buhler

Rearranging Inequality (2) to isolate k, we find that

k ! log
(

1 − ρ
1/"
fn

)

log
(

1 − r
d

) . (3)

This bound determines the largest k that can be used
without compromising our desired sensitivity. For a given
sensitivity, we can trade an increase in k, which lowers
the expected work per iteration, for a larger number of
iterations ". The false positive rate ρfp determines when
this tradeoff is advantageous.

To estimate our algorithm’s expected false positive rate,
we must assume a specific background sequence model.
We assume an i.i.d. model, in which characters are chosen
independently at random for each sequence position such
that any two positions match with probability φ. In
practice, φ ranges between 0.25 and 0.30. In this model,
the chance that two random, independently-chosen d-mers
differ by exactly t substitutions is the binomial probability

β1−φ,d [t] =
(

d
t

)

(1 − φ)tφd−t .

We will compute the probability qfp that two randomly
chosen dissimilar d-mers hash together in one iteration
of the algorithm. If the d-mers differ by exactly t
substitutions, they hash together with probability (1 −
t/d)k . Applying the prior distribution on t induced by our
sequence model and summing over all t large enough to
be considered dissimilar, we have that

qfp =
d

∑

t=r+1

β1−φ,d [t]
(

1 − t
d

)k

. (4)

The probability qfp is also the expected rate of false
positives in one iteration of the algorithm; hence, the
overall false positive rate ρfp is " · qfp.

For fixed " and ρfn, we can minimize the false positive
rate by choosing k as large as possible, subject to the
upper bound of Inequality (3) and the fact that k must be
an integer. Figure 1 illustrates how ρfp depends on " for
typical values of d , r , and ρfn. As " becomes larger, the
maximum allowable k increases, which lets us lower ρfp.
The decreases in ρfp are discontinuous because k grows
in integer steps; between these steps, the false positive
rate actually increases because we perform more iterations
without changing k.

In summary, the LSH-ALL-PAIRS algorithm may be
parameterized as follows. The user specifies a desired level
of match identity r/d and a target false negative rate ρfn.
We first fix d long enough to achieve a low rate of chance
matches under the background sequence model. We then
compute a curve for ρfp versus " as shown in Figure 1
using d , r , and ρfn. Finally, we choose the number of

0 50 100 150 200 250 300 350 400 450 500
10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

Number of Iterations

T
ot

al
 F

al
se

 P
os

iti
ve

 R
at

e

Fig. 1. False positive rates as a function of " for d = 75, ρfn =
0.05, and various levels of similarity. From top to bottom, the lines
represent r = 25 (67% identity), r = 19 (75% identity), and r = 15
(80% identity). For each value of ", we used the largest possible k
as determined by Inequality (3) to compute the false positive rate.

iterations ", which determines a point on the curve and
therefore fixes both k and the expected false positive rate.

The choice of " should minimize the total running time
%("k N) + %(ρfpd N 2). Because ρfp decreases with in-
creasing k, which in turn depends on ", we must trade off
the time spent discarding false positives against the time
to partition %(N) tuples in each iteration. To choose " op-
timally, we scale the two terms in the running time by their
respective implementation constants, which are the costs
for one partitioning step and one pairwise d-mer com-
parison. We measure these costs empirically. Total work
is typically minimized when " is large, on the order of
several hundred iterations for match identities of 60–70%.

Our parameter estimates conservatively assume that
we can find similar d-mer pairs only if the core LSH-
ALL-PAIRS algorithm hashes them together. However,
we may relax this assumption by adding inexpensive
algorithmic extensions to recover similarities that the core
algorithm would otherwise miss. We consider several such
extensions, along with other implementation details, in
the next section. In practice, extending the core algorithm
allows us to perform substantially fewer iterations while
still achieving a low false negative rate.

IMPLEMENTATION
We have implemented the LSH-ALL-PAIRS algorithm in
the C++ language as part of a program to compute
local alignments between long genomic sequences. Our
implementation focuses on memory efficiency, which is

422

Fixed ρfn = 0.05 (i.e. k is changing). d = 75.
Curves for three values of r (25, 19, 15) Buhler, 2001

20

Running time

O(!kN) + O(ρfpdN2)

hashing/partitioning time comparison time

• Trick is to balance the two terms

• ρfp decreases with increasing k

• k depends on !

21

Testing Sequence comparison by locality-sensitive hashing

20
0

40
0

60
0

80
0

10
00

200 400 600 800 1000

Human TCR alpha (kilobases)

M
ou

se
 T

C
R

 a
lp

ha
 (

ki
lo

ba
se

s)

Fig. 3. Similarities detected between the human and mouse TCR
α/δ loci. The median identity of all similarities shown is 72%. The
central group of similarities are V-segments, while the smaller group
at upper right are J-segments.

To test the performance of LSH-ALL-PAIRS in identi-
fying diverged coding sequences, we searched for simi-
larities between gene segments in the human and mouse
TCR α/δ loci§. The human and mouse sequences spanned
1.07 Mb and 1.67 Mb respectively, of which 587 kb in hu-
man and 774 kb in mouse remained after removing com-
mon interspersed repeats. Searching these sequences for
ungapped similarities with at least 67% identity required
about 16 min.

Our analysis produced 2879 significant similarities,
shown in Figure 3, with a median length of 93 bases
(compared to the 300–500 bases in each V-segment) and
a median identity of 72%. The median exact match length
found in these similarities was twelve bases, though more
than a quarter had no exact match longer than eight
bases. Similarity between paralogous V- and J-segments
caused each segment from one sequence to match multiple
segments in the other, giving rise to the large number of
off-diagonal matches present in the figure. Over 99.5% of
similarities were found within the algorithm’s first thirty
iterations (out of 258 total).

We evaluated the sensitivity of our analysis by compar-

§ GenBank accessions for human sequence (Boysen et al., 1997):
AE000658–62. Accessions for mouse sequence: AC003057, AC003993–
7, AC004096, AC004101–2, AC004399, AC004404–7, AC005240–1,
AC005402–3, AC005835, AC005855, AC005938, AC005964, AC006119,
AF259071–4, M64239.

ing the similarities found to the annotated positions of V-
segments in the two sequences¶. LSH-ALL-PAIRS’ matches
intersected 56 of 57 annotated V-segments in human and
104 of 106 V-segments in mouse, primarily by match-
ing the 3′ ends of the segments’ second exons along with
a conserved noncoding signal just downstream of these
exons. Our analysis also detected similarities involving
roughly 90% of annotated J-segments in each sequence,
as well as additional features including the four exons of
each sequence’s C-segment, several noncoding enhancer
sequences, and a cluster of olfactory receptor genes near
the 5′ ends of the sequences.

We detected several matches between annotated V-
segments in one genome and regions with no annotation
in the other. These matches appear to reflect additional
V-segments, probably no longer transcribed, that were
not detected by the investigators who originally annotated
these loci.

Human chromosome 22
To test the performance of LSH-ALL-PAIRS on a large
sequence, we searched for significant self-similarities in
the sequence of human chromosome 22. We used the
Sanger Center’s May 2000 assembly of the chromosome,
though we obtained similar results with the original
assembly described in Dunham et al. (1999).

Human chromosome 22 has 34.6 Mb of euchromatic se-
quence, of which 18 Mb remained after masking inter-
spersed repeats. Searching for ungapped self-similarities
with at least 67% identity required 15.2 h and roughly
285 Mb of memory.

Our analysis produced 38514 significant similarities,
plotted in Figure 4. The similarities had a median length
of 111 bases, a median identity of 79.6%, and a median
exact match length of eighteen bases. 6274 similarities, or
approximately 16% of those reported, had identities of at
most 70%; among these, the median exact match length
was only ten bases. Over 3 × 108 exact 10-mer matches
would be expected in chromosome 22 by chance alone, so
we expect that many of the weak similarities we found
would be difficult to detect efficiently by conventional
methods that filter exact matches.

LSH-ALL-PAIRS was able to identify a number of repet-
itive gene families on chromosome 22. The most striking
group of similarities was the large immunoglobulin λ
locus, located between 5.9 and 6.9 Mb in the figure,
which has a family of paralogous gene segments similar
to the TCR loci. Close inspection of our plot revealed
additional clusters of similarities near the diagonal; using
the annotated dot plot from Dunham et al. (1999), we

¶ Annotations were kindly provided by C. Boysen for human (C. Boysen,
personal communication, 2000) and J. Roach for mouse (J. Roach, personal
communication, 2000).

425

Buhler, 2001

22

