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Exact vs inexact matching

® Exact matching

® Good for highly-similar sequences, or for
locating highly-conserved short substrings

® As sequences diverge, exact matching must use
shorter seeds, resulting in low specificity

® Can be done very efficiently - suffix trees/arrays
® |nexact matching
® Better for diverged sequences

® Much harder than exact matching



Inexact matching problem

® Given a set S of sequences

= @ Find all pairs of d-mers that differ in at most
” r positions

® Or, find all pairs of d-mers that have edit
distance less than €



Locality-sensitive hashing

® Problem:
® Given set of high-dimensional data points

® Want to find all similar points, or find closest
points to a given query point

® | ocality-sensitive hashing (Indyk & Motwani, 1998):

® Hashing scheme with similar points more likely
to hash together

® Randomized algorithm



(r, €)-Neighbor problem

e Given:
® P:set of elements from set S
® D:distance function on set S
® q:query element
® Determine whether:
® exists p in P such that D(q,p) < r
® return a point p’ such that D(q, p’) < r(l + €)

® orall pinP have D(q,p) 2 r(l + €)



(rl,r2,pl,p2)-sensitive
hash families

Definition 1 A family H of functions h : S — U is (r1, 72, p1, p2)-sensitive for
D(-,-) if Vp,q € S

1. if p € B(q,r1) then Py [h(q) = h(p)] > p1
2. if p & B(q,r2) then Py [h(q) = h(p)] < p2
where B(g,r) ={p: D(p,q) <}

® Useful families have pi > p2and ri <

® The closer the points, the higher the
chance of collision via the hash function



(rl,r2,pl,p2)-sensitive
hash family example

S = H? (d'-dimensional Hamming cube)

D(p,q) = dyg(p,q) (Hamming distance)
Hd/ — {hz . hz((bl, “ . ,bd/)) — bi,fOl" 1 = 1, .o ,d/}

Hd’ 1S (T,’r(l

r r(1+e€)
E),l—g,l d/

) -sensitive, Vr, €



LSH functions

Choose [ functions ¢, ..., g;, where g are of the form:

where h;,,...,h;, chosen at random from H with replacement

Tk



LSH preprocessing

Algorithm Preprocessing

Input A set of points P,
| (number of hash tables),

Output Hash tables 7;, 1 =1,...,!
Foreach:1=1,...,{
Imitialize hash table 7; by generating
a random hash function g;(-)
Foreach:1=1,...,{
Foreach j=1,....n
Store point p; on bucket g;(p;) of hash table 7;

(Gionis, 1999)
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LSH approximate
nearest neighbor

Algorithm Approximate Nearest Neighbor Query
Input A query point ¢,
K (number of appr. nearest neighbors)
Access To hash tables 7;, ¢ =1,...,!
generated by the preprocessing algorithm
Output K (or less) appr. nearest neighbors
S+ 0
Foreach:1=1,...,!(
S + S U {points found in g¢;(q) bucket of table 7;}
Return the K nearest neighbors of ¢ found 1n set S
/* Can be found by main memory linear search */

(Gionis, 1999)
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LSH (r, €)-Neighbor
correctness conditions
P ={p :p ePdlqp)>rs=r(1+¢)}

LSH algorithm solves (r, €)-Neighbor problem if both:

P1 If there exists p* s.t. p* € B(q,r1),
then g;(p*) = g;(q) for some j =1,...,1

P2 The total number of hash table blocks
referenced by ¢ and containing only points from P’
is less than cl, for some constant c.
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LSH (r, €)-Neighbor
correctness

Theorem 1 For a (ry,r2, p1,p2)-sensitive family H,

if we set p = %, k =log,,,,(n/B) and | = (5)*,

then P1 and P2 hold with probability at least % — é > (0.132

i

“constant probability” - does not change with input size n

For proof, see (Gionis, 1999)
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Randomized algorithms

® Given an algorithm A, that succeeds with
probability pi

® Algorithm A, which runs A| t times,
succeeds with probability p> = | - (I - p1)t

® Can make p; as big as we like

® For t > 32,LSH (r, €)-Neighbor succeeds
with probability > 0.99
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Complexity results

® | SH (r, €)-Neighbor used to solve €-Nearest
Neighbor Search (€-NNS) problem

® O(dn'/(I*©)) query time (sublinear!) for all €

® O(n'*V(I*€) + nd) preprocessing time
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LSH for sequence

comparison
e Buhler, 2001
® Points are d-mers over some alphabet

® Comparing all d-mers at once, not just one
query d-mer against all others

® Hash function f:
® pick k indices ij,...,ik from {l,...,d}

® f(s) = (s[i1], s[i2], ..., s[ik])
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(rl,r2,pl,p2)-sensitive
property

® |[fs| and s; differ by at most r| = r positions
then,
r

Flf(s1) = fs2)] 2m = (1-5)

® |f not, s| and sy differ by at least ro=r + |
positions and

Plf(s1) = f(s2)] < p2 = (1 3 1)k
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LSH-ALL-PAIRS

® Input:Set C of sequences of total length N

® Output:All pairs of d-mers that differ by no more
than r substitutions

® Algorithm: Iterate £ times:
® Choose random LSH function (choose k indices)
® Partition d-mers by hash value

® In each partition, compare all d-mers, output those
that differ in no more than r positions

17



False-negative rate

e Typically set £ and k such that expected
false negative rate is sufficiently small (e.g.,

0.05)

Pfn S

k <

=

r
1 — —
d

log (1 — p%f

y
)

— log (1 — g)

14
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False positive rate

False positive rate: fraction of d-mers that
we compare (because they hash to the same
value) that are not similar enough

For two unrelated random d-mers, assume
chance of match at any position is @

Chance that unrelated d-mers differ by t

itutions: d
substitutions By yalt) = <t>(1 _ p)tpdt

d k
t
False positive rate: /7~ ‘ Z Pr-galt) (1 - 3)

t=r—+41



Tradeoffs
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Fixed pf, = 0.05 (i.e. k is changing). d = 75.
Curves for three values of r (25, 19, 15) Buhler. 2001
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Running time

O(lkN) + O(pspdN?)

/N

hashing/partitioning time comparison time

® TJrick is to balance the two terms

® Dg, decreases with increasing k

® k depends on /
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