
BMI/CS 776
Lecture #17:

Pattern Matching -
Suffix trees

Colin Dewey
2007.03.20

1

Alignment vs pattern matching

• Global sequence alignment

• Input: n ≥ 2 relatively short sequences

• Homology assumptions: homologous along entire
length, colinear

• Goal: determine homologous positions

• Pattern matching

• Input: n ≥ 1 sequences (short or long)

• Homology assumptions: none

• Goal: find short exact/inexact substring (local)
matches between or within input sequences

2

Why pattern matching?

• Applications:

• Database search - short query, large DB

• Alignment of long sequences - exact global
alignment no longer feasible

• Alignment of rearranged/duplicated sequences -
no longer global alignment

• Key idea:

• Short local matches can seed longer global
alignments

3

Database search

query

DB
highly-similar short

match to query

pattern matching global alignment of each
candidate to query

4

Global alignment of long
sequences

Find seed matches using
pattern matching

Sparse dynamic
programming with seed

matches

5

Alignment of rearranged
sequences

whole-genome
dot plot

Each dot represents a
seed match between
genome sequences

6

Suffix trees

• Very important for pattern matching

• Substring problem:

• Given text T of length m

• Preprocess T in O(m) time

• Such that, given query string S of length n,
find occurrence (if any) of S in T in O(n) time

• Suffix trees solve this problem, and many more

7

History of suffix trees

• Weiner (1973) - First linear time algorithm
for suffix tree construction

• “the algorithm of 1973” (Knuth)

• McCreight (1976) - Space efficient version of
algorithm

• Ukkonen (1995) - Simple, elegant algorithm,
with “online” property

this lecture

8

Suffix tree definition
• A suffix tree T for a string S of length m is tree with the

following properties:

• rooted and directed

• m leaves, labeled 1 to m

• Each edge labeled by a substring of S

• Concatenation of edge labels on path from root to leaf i is
suffix i of S (we will denote this by Si...m)

• Each internal non-root node has at least two children

• Edges out of a node must begin with different characters

key property

9

Suffix tree example

• S = “banana$”

• Add ‘$’ to end
so that suffix
tree exists

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

10

Solving the substring
problem

• Assume we have suffix tree T

• FindMatch(Q, T):

• Follow (unique) path down from root of T
according to characters in Q

• If all of Q is found to be a prefix of such a path

• return label of some leaf below this path

• else, return no match found

11

Solving the substring
problem

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

Q = anab

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

Q = nan

STOP

return 3 return no match found

12

Runtime of substring
problem with suffix tree
• Finite alphabet: O(1) work at each node

• Edges out of each node start with unique
characters: unique path from root

• Size of tree below end of path: O(k), k =
number of suffixes starting with Q

• O(n + k) time to report all k matching
substrings

• O(n) to report just one with an additional trick

13

Naive suffix tree building

• Now we need a O(m) time algorithm for
building suffix trees

• Naive algorithm is O(m2):

• T ← empty tree

• For i from 1 to m:

• Add suffix Si...m to T by finding longest
matching prefix of Si...m in T and branching
from there

O(m)
14

O(m2) suffix tree building

1

b
a
n
a
n
a
$

1

b
a
n
a
n
a
$

a
n

n
a

$

a

2 1

b
a
n
a
n
a
$

a
n

n
a

$

a

2

n
a
n
a
$

3 1

b
a
n
a
n
a
$

n
a
n
a
$

3

a
n

n
a

$ $

2 4

a

i=1 i=2 i=3 i=4 ...

15

Ukkonen’s O(m) algorithm

• On-line algorithm

• Builds implicit suffix tree for each prefix of
string S

• Implicit suffix tree of S1...i denoted Ii

• Builds I1, then I2 from I1,..., then Im from Im-1

• Basic algorithm is O(m3), but with a series of
tricks, it is O(m)

16

Implicit suffix tree
• Suffix tree → implicit suffix tree

• remove $ characters from labels

• remove edges with empty labels

• remove internal nodes without two children

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

1

b
a
n
a
n
a

n
a

n
a

a
n

n
a

2 3

a

17

Ukkonen’s algorithm
overview

• Construct I1

• For i from 1 to m - 1:

• For j from 1 to i + 1:

• Find end of path from root labeled Sj...i

• Add character Si+1 to the end of this
path in the tree, if necessary (suffix
extension)

18

Conversion to suffix tree
• Convert implicit suffix tree at end of algorithm

into true suffix tree

• Simply run algorithm for one more iteration
with $ final character

• Traverse tree to label leaf edges with positions

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

1

b
a
n
a
n
a

n
a

n
a

a
n

n
a

2 3

a

19

Suffix extension rule I

I. If path Sj...i in tree ends at leaf, add character
Si+1 to end of label of edge into leaf

a
n

a
n
a

Sj...i = ...an Sj...i+1 = ...ana

20

Suffix extension rule II

II. If there are paths continuing from path Si...j in
the tree, but none starting with Si+1, then
create a new leaf edge with label Si+1 at the
end of path Si...j (creating a new internal node
if Si...j ends in the middle of an edge)

a
n

n
a
n

Sj...i = ...na Sj...i+1 = ...nay

n
y

21

Suffix extension rule III
III. If there are paths continuing from path Si...j in

the tree, and one starts with Si+1, then do
nothing

a
n

Sj...i = ...na Sj...i+1 = ...nan

n
a
n

n

22

Suffix links

• How to find end of each suffix Sj...i?

• Could search down tree in O(i-j+1) time
→O(m3) time total

• Better: create links between nodes
corresponding to ends of similar suffixes

• With some additional tricks, get runtime to
O(m2) time total

23

Suffix link definition
• A suffix link is a pointer from an internal node v to

another node s(v) where

• x is a character, α is a substring (possibly empty)

• v has path-label xα

• s(v) has path-label α
$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

24

Edge-label compression

• Label edges with pair of indices into string
rather than with explicit substring

• Makes space requirement only O(m)

(7,7)

1

(7,7)

(2,2)

(7,7)

2 34 5

(7,7)

6

7

S = “banana$” (3,4)

(5,7)

(1,7) (3,4)

(5,7)

25

Final runtime

• With a few more tricks and implementation
details, Ukkonen’s algorithm runs in time O(m)

• More details found in (Ukkonen, 1995) or book
by Dan Gusfield (Gusfield, 1997)

26

