# BMI/CS 776 Lecture #17: Pattern Matching Suffix trees

Colin Dewey 2007.03.20

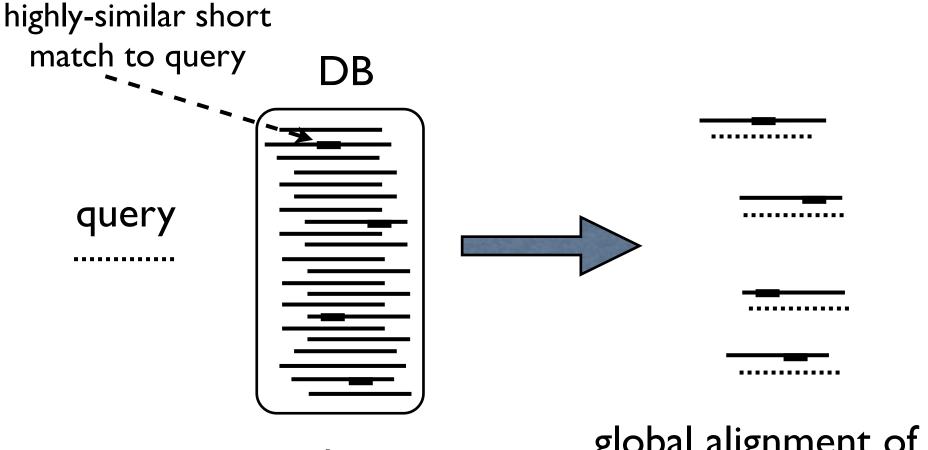
### Alignment vs pattern matching

- Global sequence alignment
  - Input: n ≥ 2 relatively short sequences
  - Homology assumptions: homologous along entire length, colinear
  - Goal: determine homologous positions
- Pattern matching
  - Input: n ≥ I sequences (short or long)
  - Homology assumptions: none
  - Goal: find short exact/inexact substring (local) matches between or within input sequences

# Why pattern matching?

- Applications:
  - Database search short query, large DB
  - Alignment of long sequences exact global alignment no longer feasible
  - Alignment of rearranged/duplicated sequences no longer global alignment
- Key idea:
  - Short local matches can seed longer global alignments

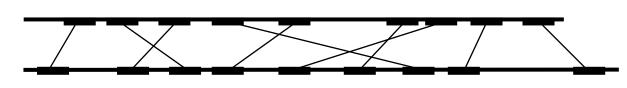
#### Database search



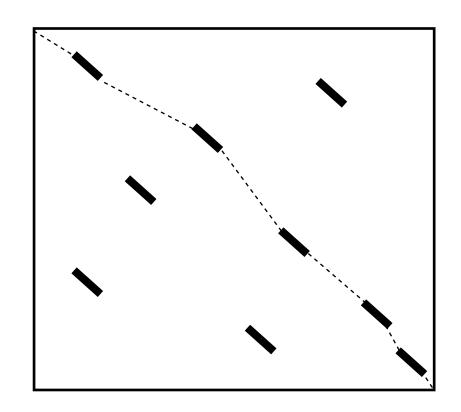
pattern matching

global alignment of each candidate to query

# Global alignment of long sequences

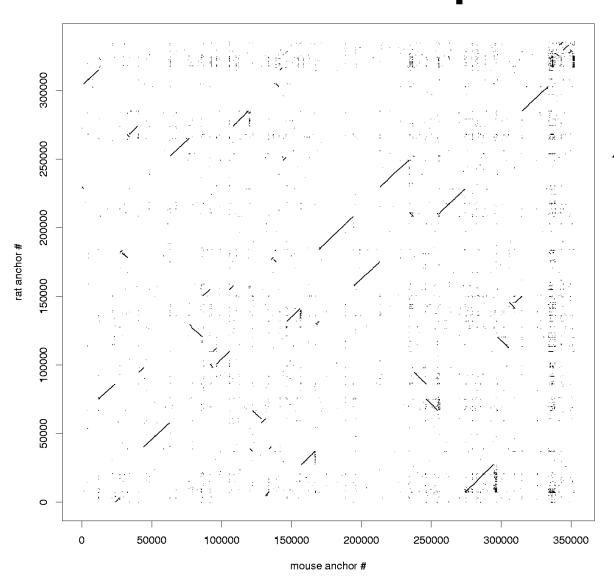


Find seed matches using pattern matching



Sparse dynamic programming with seed matches

# Alignment of rearranged sequences



whole-genome

dot plot

Each dot represents a seed match between genome sequences

#### Suffix trees

- Very important for pattern matching
- Substring problem:
  - Given text T of length m
  - Preprocess T in O(m) time
  - Such that, given query string S of length n,
     find occurrence (if any) of S in T in O(n) time
- Suffix trees solve this problem, and many more

# History of suffix trees

- Weiner (1973) First linear time algorithm for suffix tree construction
  - "the algorithm of 1973" (Knuth)
- McCreight (1976) Space efficient version of algorithm

this lecture

 Ukkonen (1995) - Simple, elegant algorithm, with "online" property

#### Suffix tree definition

- A suffix tree T for a string S of length m is tree with the following properties:
  - rooted and directed
  - m leaves, labeled 1 to m

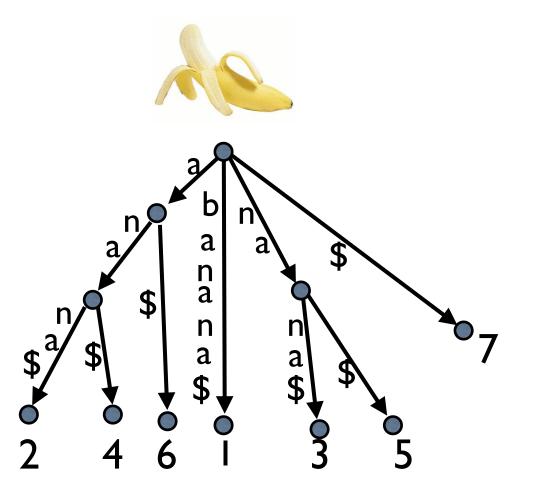
key property



- Each edge labeled by a substring of S
- Concatenation of edge labels on path from root to leaf i is suffix i of S (we will denote this by  $S_{i...m}$ )
- Each internal non-root node has at least two children
- Edges out of a node must begin with different characters

### Suffix tree example

- *S* = "banana\$"
- Add '\$' to end so that suffix tree exists

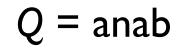


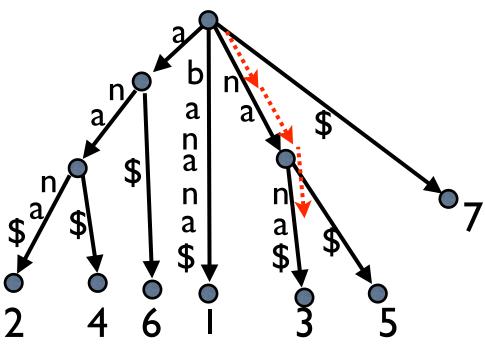
# Solving the substring problem

- Assume we have suffix tree T
- FindMatch(*Q*,*T*):
  - Follow (unique) path down from root of T according to characters in Q
  - If all of Q is found to be a prefix of such a path
    - return label of some leaf below this path
  - else, return no match found

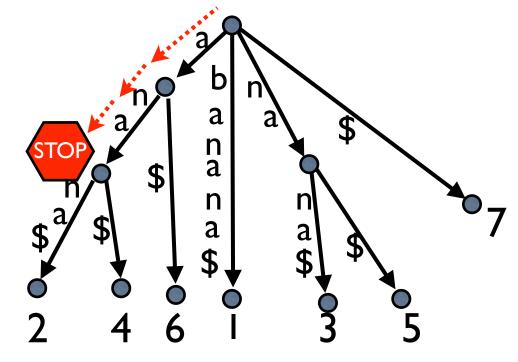
# Solving the substring problem







return 3



return no match found

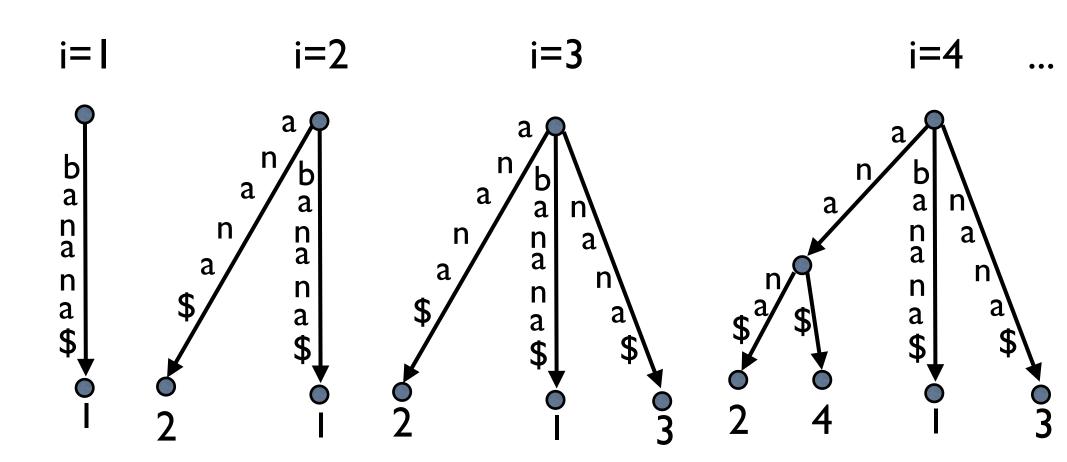
# Runtime of substring problem with suffix tree

- Finite alphabet: O(1) work at each node
- Edges out of each node start with unique characters: unique path from root
- Size of tree below end of path: O(k), k = number of suffixes starting with Q
- O(n + k) time to report all k matching substrings
- O(n) to report just one with an additional trick

### Naive suffix tree building

- Now we need a O(m) time algorithm for building suffix trees
- Naive algorithm is  $O(m^2)$ :
  - $T \leftarrow$  empty tree
  - For i from 1 to m:
    - Add suffix  $S_{i...m}$  to T by finding longest matching prefix of  $S_{i...m}$  in T and branching from there

# O(m<sup>2</sup>) suffix tree building

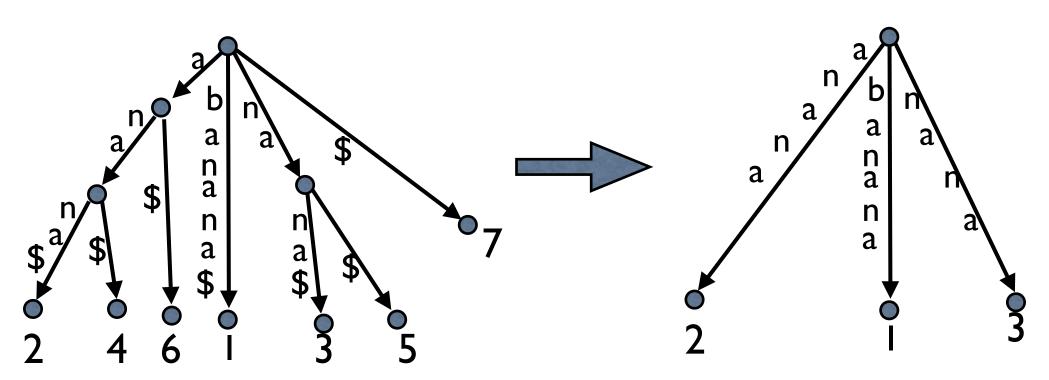


### Ukkonen's O(m) algorithm

- On-line algorithm
  - Builds implicit suffix tree for each prefix of string S
  - Implicit suffix tree of S<sub>1...i</sub> denoted I<sub>i</sub>
  - Builds  $I_1$ , then  $I_2$  from  $I_1$ ,..., then  $I_m$  from  $I_{m-1}$
- Basic algorithm is O(m³), but with a series of tricks, it is O(m)

## Implicit suffix tree

- Suffix tree → implicit suffix tree
  - remove \$ characters from labels
  - remove edges with empty labels
  - remove internal nodes without two children

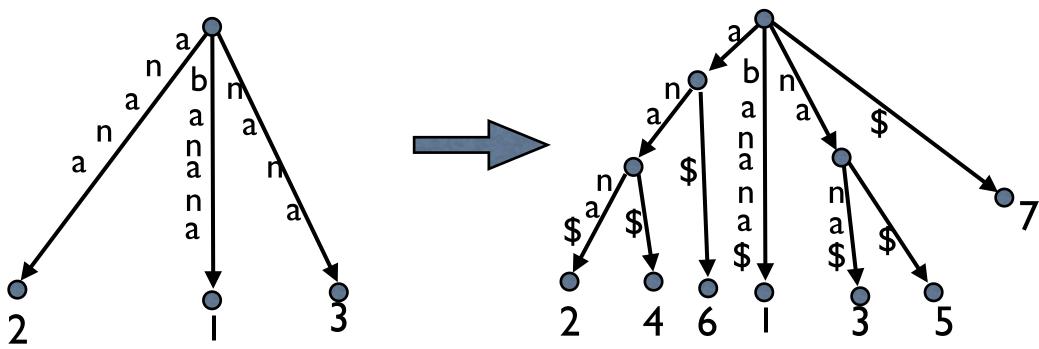


# Ukkonen's algorithm overview

- Construct I<sub>1</sub>
- For *i* from 1 to m 1:
  - For j from I to i + I:
    - Find end of path from root labeled  $S_{j...i}$
    - Add character  $S_{i+1}$  to the end of this path in the tree, if necessary (suffix extension)

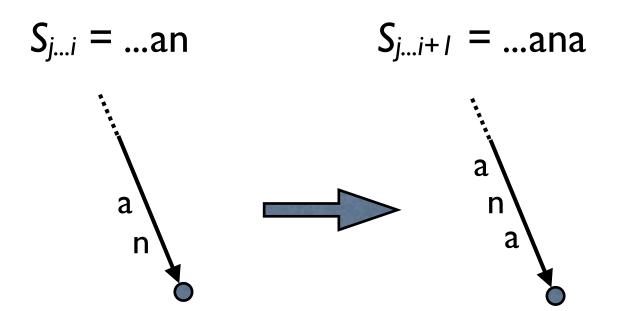
#### Conversion to suffix tree

- Convert implicit suffix tree at end of algorithm into true suffix tree
- Simply run algorithm for one more iteration with \$ final character
- Traverse tree to label leaf edges with positions



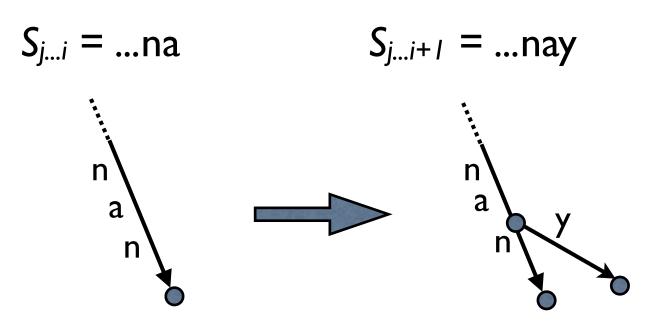
#### Suffix extension rule I

I. If path  $S_{j...i}$  in tree ends at leaf, add character  $S_{i+1}$  to end of label of edge into leaf



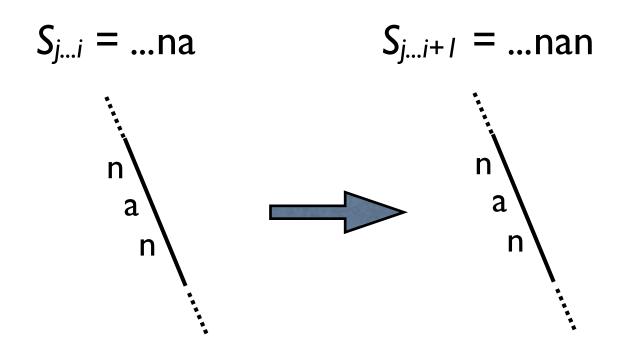
### Suffix extension rule II

II. If there are paths continuing from path  $S_{i...j}$  in the tree, but none starting with  $S_{i+1}$ , then create a new leaf edge with label  $S_{i+1}$  at the end of path  $S_{i...j}$  (creating a new internal node if  $S_{i...j}$  ends in the middle of an edge)



### Suffix extension rule III

III. If there are paths continuing from path  $S_{i...j}$  in the tree, and one starts with  $S_{i+1}$ , then do nothing

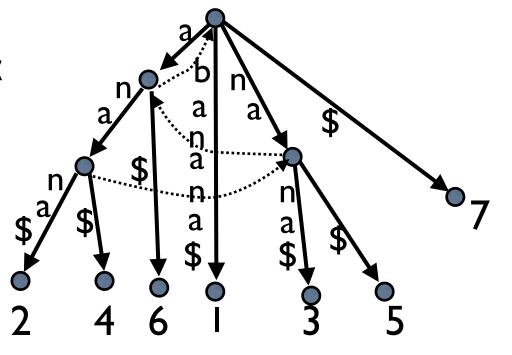


#### Suffix links

- How to find end of each suffix  $S_{j...i}$ ?
- Could search down tree in O(i-j+1) time
   →O(m³) time total
- Better: create links between nodes corresponding to ends of similar suffixes
- With some additional tricks, get runtime to O(m²) time total

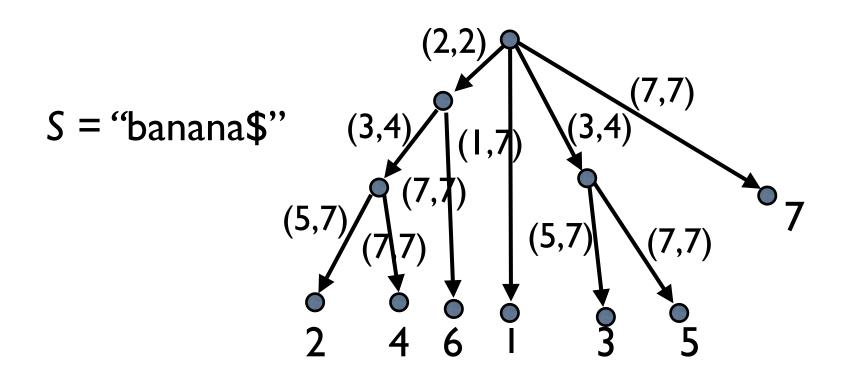
#### Suffix link definition

- A suffix link is a pointer from an internal node v to another node s(v) where
  - x is a character,  $\alpha$  is a substring (possibly empty)
  - v has path-label  $x\alpha$
  - s(v) has path-label  $\alpha$



# Edge-label compression

- Label edges with pair of indices into string rather than with explicit substring
- Makes space requirement only O(m)



#### Final runtime

- With a few more tricks and implementation details, Ukkonen's algorithm runs in time O(m)
- More details found in (Ukkonen, 1995) or book by Dan Gusfield (Gusfield, 1997)