BMI/CS 776 Lecture #10: Alignment combinatorics

Colin Dewey 2007.02.22

Homology forests revisited

Set of positions in sequence i (forward strand)

$$S_{\sigma^i} = \{(i, j, +) : j \in \{1, \dots, n_i\}\}$$

Set of positions in all sequences (forward strand)

$$S_{\sigma^1,\dots,\sigma^k} = \cup_{i=1}^k S_{\sigma^i}$$

Set of positions in sequence i (reverse strand)

$$\overline{S}_{\sigma^i} = \{(i, j, -) : j \in \{1, \dots, n_i\}\}$$

Set of positions in all sequences (reverse strand)

$$\overline{S}_{\sigma^1,\dots,\sigma^k} = \bigcup_{i=1}^k \overline{S}_{\sigma^i}.$$

homology forest: forest with leaves labeled by $S \cup \overline{S}$, with # occurrences of label (i, j, +) + # occurrences of label $(i, j, -) \le 1$

Alignments today

- Just matching of homologous positions
- No trees, or trees are afterthought
- Homology sets = columns in alignment

```
CA-GC--TACGGCTTA-GCCT
TA-CCACTAC--CTGA-GCAT
CA-GCAGTTC--CTTA-GCCT
CA-GC--TACCGCTGA-ACAT
CATGCAGTTC--CTTACACCT homologous
```

Alignments we've seen

- Motif finding
 - Local multiple alignment
 - May or may not be actually homologous
 - No trees

Order in alignments

- Homology forests do not deal with order of nucleotides in either extant or ancestral species
- However, order is very important for
 - Determining homologous positions
 - Representing and visualizing homology

Global alignment

- Given k homologous sequences
- Assumes sequences are all colinear:
 - Homologous positions occur in the same order in each sequence

Partially ordered set

- A partially ordered set (poset) is a set P together with a relation ≤ with the following properties (for all x, y, z in P):
 - reflexivity: $x \le x$
 - antisymmetry: If $x \le y$ and $y \le x$, then x = y
 - transitivity: If $x \le y$ and $y \le z$, then $x \le z$

Morning tasks poset

- P = {wake up, brush hair, shower, leave for school, drink coffee, eat breakfast, pack bag, brush teeth}
- $x \le y$ if task y may not be done before task x
 - shower ≤ brush hair
 - eat breakfast ≤ brush teeth

- shower ≤ leave for school
- etc.

Hasse diagram

• Line upward from x to y if $x \le y$ and there is no $z \in P$ such that $x \le z \le y$

Partial global multiple alignment

A partial global multiple alignment of sequences $\sigma^1, \ldots, \sigma^k$ is a partially ordered set $P = \{c_1, \ldots, c_m\}$ together with a surjective function $\varphi : S_{\sigma^1, \ldots, \sigma^k} \to P$ such that $\varphi((i, j_1, \epsilon_1)) \leq \varphi((i, j_2, \epsilon_2))$ if $j_1 \leq j_2$.

- $c_1, ..., c_m$: columns in multiple alignment
- P: the "alignment poset"
- surjective: ϕ maps at least one sequence position to every column c_i
- (i, j, \in) : position j in sequence i on strand \in

Example alignment poset

$$\begin{array}{c} \phi \\ (1,1,+) \to c_1 \\ (1,2,+) \to c_2 \\ (1,3,+) \to c_3 \\ \sigma^! : ACT \quad (2,1,+) \to c_1 \quad c_1 \leq c_2 \leq c_3 \\ \sigma^2 : AGT \quad (2,2,+) \to c_4 \quad c_1 \leq c_4 \leq c_3 \\ \sigma^3 : TGT \quad (2,3,+) \to c_3 \quad c_5 \leq c_4 \leq c_3 \\ (3,1,+) \to c_5 \\ (3,2,+) \to c_4 \\ (3,3,+) \to c_3 \end{array} \quad \begin{array}{c} c_5 \ c_1 \ c_4 \ c_2 \ c_3 \\ - \ A \ C \ T \\ - \ A \ G \ - \ T \\ T \ - \ G \ - \ T \\ \end{array}$$

• Unless we have a **total order**, the order of some columns is not specified (e.g., c_5 and c_1)

Extreme example: Null alignment

- Given sequences $\sigma^1, \sigma^2, ..., \sigma^k$ of lengths $n_1, n_2, ..., n_k$
- Null alignment: size of P is $\sum n_i$
 - Every position is mapped to a different column

Number of pairwise partial global alignments

Proposition 2.5 The number of partial global alignments of two sequences of length n and m is $\binom{n+m}{m}$.

Proof: Note that the number of alignments with k homologous nucleotides is given by $\binom{n}{k}\binom{m}{k}$. The total number of alignments is therefore

$$\sum_{k=0}^{\min(n,m)} \binom{n}{k} \binom{m}{k} = \binom{n+m}{n}.$$

Linear extension

- A **linear extension** of a partially ordered set $P = \{c_1, ..., c_m\}$ is a permutation Π of the elements $c_1, ..., c_m$ such that whenever $c_i \le c_j$, $\Pi(c_i) \le \Pi(c_j)$
- A global multiple alignment is a partial global multiple alignment along with a linear extension of the alignment poset

$$c_1 \le c_2 \le c_3$$
 $c_1 \le c_4 \le c_3$
 $c_5 \le c_4 \le c_3$

Number of pairwise global alignments

- The number of pairwise global alignments of sequences of length n and m is the Delannoy number $D_{n,m}$
- $D_{n,m}$: number of lattice paths from (0,0) to (n,m) with allowed moves \uparrow, \rightarrow , and \nearrow

$$D_{n,m} = \sum_{k=0}^{\min(n,m)} \binom{n}{k} \binom{m}{k} 2^k$$

Partial vs full alignments

- The number of possible partial alignments is very large
- The number of full alignments is even larger

Number of pairwise alignments

n	partial	full	
I	2	3	
2	6	13	
3	20	63	
4	70	321	
5	252	1,683	
6	924	8,989	
7	3,432	48,639	
8	12,870	265,729	
9	48,620	1,462,563	
10	184,756	8,097,453	

Representing full pairwise global alignments

- representations for pairwise alignment h, of sequences $\sigma^1 = \sigma_1^1 \sigma_2^1 \cdots \sigma_n^1$ and $\sigma^2 = \sigma_1^2 \sigma_2^2 \cdots \sigma_m^2$
 - edit string h over edit alphabet {H, I, D}
 - H: homology, I: insertion, D: deletion
 - path in alignment graph

• sequence of pairs $(\sigma_i^1 \diamond \sigma_j^2), (\sigma^1 \diamond -), \text{ or } (\sigma^2 \diamond -)$

Comparing alignments

Compare in terms of H, I, and D pairs:

$$h_H = \{(i,j) : (\sigma_i^1 \diamond \sigma_j^2) \in h\},$$

$$h_D = \{i : (\sigma_i^1 \diamond -) \in h\},$$

$$h_I = \{j : (\sigma_j^2 \diamond -) \in h\}.$$

for any $h \in A_{n,m}$ $|h_H| + |h_D| = n$ and $|h_H| + |h_I| = m$.

Alignment equivalence

 Alignments are defined to be equivalent if they match up the same sequence positions

$$h^i \sim h^j$$
 if and only if $h_H^i = h_H^j$

 Equivalently, alignments are equivalent if they gap the same sequence positions

$$h^i \sim h^j$$
 if and only if $h^i_I = h^j_I$ and $h^i_D = h^j_D$ AC-T A-GT AG-T

Alignment measures

 Measures of sensitivity and specificity, with respect to a reference alignment h^r

$$f(h^i,h^j) = \frac{|h_H^i \cap h_H^j|}{|h_H^i|}$$

$$f_D(h^p,h^r) = f(h^r,h^p) = \frac{|h_H^r \cap h_H^p|}{|h_H^r|} \qquad \text{``developer's measure''}$$

$$f_M(h^p,h^r) = f(h^p,h^r) = \frac{|h_H^r \cap h_H^p|}{|h_H^p|} \qquad \text{``modeler's measure''}$$

$$(specificity)$$

(specificity)

Distances between alignments

- Would like a distance function between alignments
- Should be a metric, i.e., it should satisfy:

$$d(h^{i}, h^{j}) \geq 0 \qquad \forall h^{i}, h^{j} \in \mathcal{A}_{n,m},$$

$$d(h^{i}, h^{j}) = 0 \text{ iff } h^{i} \sim h^{j} \qquad \forall h^{i}, h^{j} \in \mathcal{A}_{n,m},$$

$$d(h^{i}, h^{j}) = d(h^{j}, h^{i}) \qquad \forall h^{i}, h^{j} \in \mathcal{A}_{n,m},$$

$$d(h^{i}, h^{j}) + d(h^{j}, h^{k}) \geq d(h^{i}, h^{k}) \qquad \forall h^{i}, h^{j}, h^{k} \in \mathcal{A}_{n,m}.$$

Alignment metric

 The following function is a finite metric on alignments:

$$d(h^{i}, h^{j}) = 2|h_{H}^{i}| + |h_{I}^{i}| + |h_{D}^{i}| - 2|h_{H}^{i} \cap h_{H}^{j}|$$

$$-|h_{I}^{i} \cap h_{I}^{j}| - |h_{D}^{i} \cap h_{D}^{j}|$$

$$= 2|h_{H}^{j}| + |h_{I}^{j}| + |h_{D}^{j}| - 2|h_{H}^{i} \cap h_{H}^{j}|$$

$$-|h_{I}^{i} \cap h_{I}^{j}| - |h_{D}^{i} \cap h_{D}^{j}|$$

$$= n + m - 2|h_{H}^{i} \cap h_{H}^{j}|$$

$$-|h_{I}^{i} \cap h_{I}^{j}| - |h_{D}^{i} \cap h_{D}^{j}|).$$

(Schwartz & Pachter, 2007)

Example alignment metric

Metric for $A_{2,2}$

	HH	HDI	DIH	IHD	DHI	DDII
\overline{HH}	0	2	2	4	4	4
HDI	2	0	4	3	3	2
DIH	2	4	0	3	3	2
IHD	4	3	3	0	4	2
DHI	4	3	3	4	0	2
DDII	4	2	2	2	2	0

$$d(h^{i}, h^{j}) = n + m - 2|h_{H}^{i} \cap h_{H}^{j}| - |h_{I}^{i} \cap h_{I}^{j}| - |h_{D}^{i} \cap h_{D}^{j}|.$$

Alignment metric accuracy

 Instead of developer or modeler score, use score based on metric

$$g(h^i, h^j) = 1 - \frac{d(h^i, h^j)}{n+m}$$

- g is fraction of positions aligned identically in the two alignments
- Alignment Metric Accuracy (AMA) = $g(h^p, h^r)$ (Schwartz & Pachter, 2007)

Multiple alignment accuracy

• All multiple alignments of sequences of lengths $n_1, n_2, ..., n_k$: $A_{n_1, n_2, ..., n_k}$

Given two MSAs $h^i, h^j \in \mathcal{A}_{n_1, n_2, \dots, n_k}$

$$d(h^{i}, h^{j}) = \sum_{s=1}^{k-1} \sum_{s=1}^{k} d(h^{i}_{s^{1}, s^{2}}, h^{j}_{s^{1}, s^{2}})$$

- Like sum-of-pairs scoring
- Accuracy: $g(h^p, h^r) = 1 \frac{d(h^p, h^r)}{(k-1)\sum_{i=1}^k n_i}$.

(Schwartz & Pachter, 2007)

Next time

- Statistical models for pairwise alignment
- Evolutionary models for sequences undergoing insertions and deletions
- Algorithms for Alignment Metric Accuracy