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Abstract

Learning Bayesian networks is often cast as an
optimization problem, where the computational
task is to find a structure that maximizes a sta-
tistically motivated score. By and large, exist-
ing learning tools address this optimization prob-
lem using standard heuristic search techniques.
Since the search space is extremely large, such
search procedures can spend most of the time
examining candidates that are extremely unrea-
sonable. This problem becomes critical when we
deal with data sets that are large both in the num-
ber of instances, and the number of attributes.
In this paper, we introduce an algorithm that
achieves faster learning by restricting the search
space. This iterative algorithm restricts the par-
ents of each variable to belong to a small sub-
set of candidates. We then search for a network
that satisfies these constraints. The learned net-
work is then used for selecting better candidates
for the next iteration. We evaluate this algorithm
both on synthetic and real-life data. Our results
show that it is significantly faster than alternative
search procedures without loss of quality in the
learned structures.

1 Introduction

In recent years there has been a growing interest in learning
the structure of Bayesian networks from data [10, 19, 15,
16, 21, 23].

Somewhat generalizing, there are two approaches for
finding structure. The first approach poses learning as a
constraint satisfaction problem. In this approach, we as-
sess properties of conditional independence among the at-
tributes in the data. Usually this is done using a statistical
hypothesis test, such as ��� -test. We then build a network
that exhibits the observed dependencies and independen-
cies. This can be done using efficient procedures. Exam-
ples of this approach include [21, 23]. The second approach
poses learning as an optimization problem. We start by
defining a statistically motivated score that describes the fit-
ness of each possible structure to the observed data. These

scores include Bayesian scores [10, 16] and MDL scores
[19]. The learner’s task is then to find a structure that opti-
mizes the score. In general, this is an NP-hard problem [7],
and thus we need to resort to heuristic search.

Although the constraint satisfaction approach is efficient,
it is sensitive to failures in independence tests. Thus, the
common opinion is that the optimization approach is a bet-
ter tool for learning structure from data.

A crucial step in the optimization approach is the heuris-
tic search. Most existing learning tools apply standard
heuristic search techniques, such as greedy hill-climbing
and simulated annealing to find high-scoring structures.
See, for example, [16, 15, 8].

Such “generic” search procedures do not apply any
knowledge about the expected structure of the network to
be learned. For example, greedy hill-climbing search pro-
cedures examine all possible local changes in each step
and apply the one that leads to the biggest improvement
in score. The usual choice for “local” changes are edge
addition, edge deletion, and edge reversal. Thus, there are
approximately ����� �	� possible changes where � is the num-
ber of variables. 


The cost of these evaluations becomes acute when we
learn from massive data sets. Since the evaluation of new
candidates requires collecting various statistics about the
data, it becomes more expensive as the number of instances
grows. To collect these statistics, we usually need to per-
form a pass over the data. Although, recent techniques
(e.g., [20]) might reduce the cost of this collection activ-
ity, we still expect non trivial computation time for each
new set of statistics we need. Moreover, if we consider do-
mains with large number of attributes, then the number of
possible candidates grows exponentially.

It seems, however, that most of the candidates considered
during the search can be eliminated in advance just by using
our statistical understanding of the domain. For example,
in greedy hill-climbing, most possible edge additions might
be removed from consideration. If � and � are almost
independent in the data, we might decide not to consider �
as a parent of � . Of course, this is a heuristic argument,



Some of these changes introduce cycles, and thus are not

evaluated. Nonetheless, the number of feasible operations is usu-
ally quite close to ��������� .



since � and � can be marginally independent, yet have
strong dependence in the presence of another variable (e.g.,
� is the XOR of � and � ). In many domains, however, it
is reasonable to assume that this pattern of dependencies do
not appear.

The idea of using measure of dependence, such as the
mutual information, between variables to guide network
construction is not new. For example, Chow and Liu’s al-
gorithm [9] uses the mutual information to construct a tree-
like network that maximizes the likelihood score. When
we consider networks with larger in-degree, several authors
use the mutual information to greedily select parents. How-
ever, these authors do not attempt to maximize any statisti-
cally motivated score. In fact, it is easy to show situations
where these methods can learn erroneous networks. This
use of mutual information is a simple example of a statisti-
cal cue. Other cues can come about from examining algo-
rithms of constraint-based approach to learning. In this pa-
per, we incorporate similar considerations within a proce-
dure that explicitly attempts to maximize a score. We pro-
vide an algorithm that empirically performs well in massive
data sets.

The general idea is quite straightforward. We use statis-
tical cues from the data, to restrict the set of networks we
are willing to consider. In this paper, we choose to restrict
the possible parents of each node. In many real world sit-
uations it is reasonable to assume the number of parents of
each variable is bounded by some constant � . Thus, instead
of having ����� potential parents for a node, we only con-
sider � possible parents, where ��� � . We then attempt to
maximize the score with respect to these restrictions. Any
search techniques we use in this case will perform faster,
since the search space is significantly restricted. Moreover,
as we show, in some cases we can find the best scoring net-
work satisfying these constraints. In other cases, we can
use the constraints to improve our heuristics.

Of course, such a procedure might fail to find a high-
scoring network: a misguided choice of candidate parents
in the first phase can lead to a low scoring network in the
second phase, even if we manage to maximize the score
with respect to these constraints. The key idea of our algo-
rithm is that we use the network we found at the end of the
second stage to find better candidate parents. We then can
find a better network with respect these new restrictions.
We iterate in this manner until convergence.

2 Background: Learning Structure

Consider a finite set �
	�� � 
�
�������
 ����� of discrete ran-
dom variables where each variable ��� may take on val-
ues from a finite set, denoted by Val � ��� � . We use capital
letters, such as � 
 � 
 � , for variable names and lowercase
letters � 
���
�� to denote specific values taken by those vari-
ables. Sets of variables are denoted by boldface capital let-
ters � 
���
! , and assignments of values to the variables in
these sets are denoted by boldface lowercase letters x 
 y 
 z.

A Bayesian network is an annotated directed acyclic
graph that encodes a joint probability distribution over� . Formally, a Bayesian network for � is a pair "#	

$&% 
!')( . The first component, namely
%

, is a directed
acyclic graph whose vertices correspond to the random
variables � 
 
�������
 � � . The graph encodes the following set
of conditional independence assumptions: each variable � �
is independent of its non-descendants given its parents in%

. The second component of the pair, ' , represents the set
of parameters that quantifies the network. It contains a pa-
rameter *,+.-0/ pa 132 -546	87 �5� �:9 pa ��� � � � for each possible value�;� of ��� , and pa � ��� � of Pa ����� � . Here Pa ����� � denotes the
set of parents of ��� in

%
and pa � ��� � is a particular instan-

tiation of the parents. If more than one graph is discussed
then we use Pa < ���=� � to specify ��� ’s parents in graph G.
A Bayesian network " specifies a unique joint probability
distribution over � given by:

7?> ��� 
@
������A
 ��� � 	
�B
�DC 


7?> � ��� 9Pa � ��� � �

The problem of learning a Bayesian network can be
stated as follows. Given a training set E�	F� x 
 
������A
 x GH�of instances of � , find a network " that best matches E .
The common approach to this problem is to introduce a
scoring function that evaluates each network with respect
to the training data, and then to search for the best net-
work according to this score. The two scoring functions
most commonly used to learn Bayesian networks are the
Bayesian scoring metric, and the one based on the principle
of minimal description length (MDL). For a full description
see [10, 16] and [4, 19].

An important characteristic of the MDL score and the
Bayesian score (when used with a certain class of factor-
ized priors, such as the BDe priors [16]), is their decompos-
ability in presence of full data. When all instances x I in E
are complete—that is, they assign values to all the variables
in � — the above scoring functions can be decomposed in
the following way:

Score � %KJ E � 	ML � Score � ��� 9 Pa � ��� � JON 2 -0P Pa 1D2 - 4 �

where
N 2 - P Pa 132 -Q4 are the statistics of the variables � � and

Pa � � � � in E —i.e., the number of instances in E that match
each possible instantiation � � and pa � � � � .

This decomposition of the scores is crucial for learning
structure. A local search procedure that changes one arc
at each move can efficiently evaluate the gains made by
this change. Such a procedure can also reuse computa-
tions made in previous stages to evaluate changes to the
parents of all variables that have not been changed in the
last move. An example of such a procedure is a greedy
hill-climbing procedure that at each step performs the local
change that results in the maximal gain, until it reaches a
local maximum. Although this procedure does not neces-
sarily find a global maximum, it does perform well in prac-
tice; e.g., see [16]. Example of other search procedures that
advance in one-arc changes include beam-search, stochas-
tic hill-climbing, and simulated annealing.

Any implementation of these search methods involves
caching of computed counts to avoid unnecessary passes



over the data. This cache also allows us to marginalize
counts. Thus, if

N 2 P � is in the cache, we can compute
N 2

by summing over values of � . This is usually much faster
than making a new pass over the data. One of the dom-
inating factors in the computational cost of learning from
complete data is the number of passes actually made over
the training data. This is particularly true when learning
from very large training sets.

3 The “Sparse Candidate” Algorithm

In this section we outline the framework for our Sparse
Candidate algorithm

The underlying principle for our algorithm is fairly intu-
itive. It calls for two variables with a “strong dependency”
between them to be located “near” each other in the net-
work. The strength of dependency between variables can
often be measured using mutual information or correla-
tion [12]. In fact, when restricting the network graph to
a tree, Chow and Liu’s algorithm [9] does exactly that. It
measures the mutual information (formally defined below)
between all pairs of variables and selects a maximal span-
ning tree as the required network.

We aim to use a similar argument for finding networks
that are not necessarily trees. Here, the general problem is
NP-hard [6]. However, a seemingly reasonable heuristic is
to select pairs � � 
 � � with high dependency between them
and create a network with these edges.

This approach however, does not take more complex in-
teractions into account. For example, if the “true” structure
includes a substructure of the form ��� ��� � , we
might expect to observe a strong dependency between �
and � , � and � , and also between � and � . However,
once we consider both � and � as parents of � , we might
recognize that � does not help in predicting � once we
take � into account.

Our approach is based on the same basic intuition of us-
ing mutual information, but we do so in a refined manner.
We use measures of dependency between pairs of variables
to focus our attention during the search. For each variable
� , we find a set of variables � 
 
������A
 ��� that are the most
promising candidate parents for � . We then restrict our
search to networks in which only these variables can be
parents of � . This gives us a smaller search space in which
we can hope to find a good structure quickly.

The main drawback of this procedure is, that once we
choose the candidate parents for each variable, we are com-
mitted to them. Thus, a mistake in this initial stage can lead
us to find an inferior scoring network. We therefore iterate
the basic procedure, using the constructed network to re-
consider the candidate parents and choose better candidates
for the next iteration. In the example of ��� ��� � , �
would not be chosen as a candidate for � , allowing a vari-
able with weaker dependency to replace it.

The resulting procedure has the general form shown in
Figure 1. This framework defines a whole class of algo-
rithms, depending on how we choose the candidates in the
Restrict step, and how we perform the search in the Max-
imize step. The choice of methods for these two steps are

Input:

� A data set E 	 � x 
 
�������
 x G � ,� An initial network "
	 ,� A decomposable score
Score �&" 9 E � 	 � � Score � � � 9 Pa > ��� � � 
 E � ,� A parameter � .

Output: A network " .
Loop for � 	 � 

� 
������ until convergence

Restrict

Based on E and " ��� 
 , select for each node ��� a
set � �� ( 9 � �� 9�� � ) of candidate parents.
This defines a directed graph ��� 	 �Q� 
�� � ,where � 	M� ����� ��� 9 ��� 
�� 
 ���
� � �� � .
(Note that � � is usually cyclic.)

Maximize

Find network " � 	 $Q% � 
:' � ( maximizing
Score �&" � 9 E � among networks that satisfy% �"! � � (i.e., � � � , Pa <$# ��� � �&% � �� ,).

Return " �
Figure 1: Outline of the Sparse Candidate algorithm

mostly independent of one another. We examine each of
these in detail in the next two sections.

Before we go on to discuss these issues, we address the
convergence properties of these iterations. Clearly, at this
abstract level, we cannot say much about the performance
of the algorithm. However, we can easily ensure its mono-
tonic improvement. We require that in the Restrict step, the
selected candidates for � � ’s parents include � � ’s current
parents, i.e., the selection must satisfy Pa <'# � � � �(% � �*) 
�
for all � � .

This requirement implies that the winning network " � is
a legal structure in the �,+M� iteration. Thus, if the search
procedure at the Maximize step also examines this struc-
ture, it must return a structure that scores at least as well
as " � . Immediately, we get that Score �Q")�*) 
 9 E �.-
Score �&" � 9 E � .

Another issue is the stopping criteria for our algorithm.
There are two types of stopping criteria: a score based cri-
terion that terminates when Score �Q")� � 	 Score �Q" �/� 
 � ,and a candidate based criterion that terminates when � �� 	� ��� 
� for all � . Since the score is a monotonically increas-
ing bounded function, the score based criterion is guaran-
teed to stop. However, the candidate based criterion might
be able to continue to improve after an iteration with no im-
provement in the score. It can also enter a non-terminating
cycle, therefore we need to limit the number of iterations
with no improvement in the score.



Input:

� Data set E 	M� x 
 
������A
 x G � ,� A network " � ,� a score� parameter � .

Output: For each variable � � a set of candidate parents � �
of size � .
Loop for each ��� � 	 � 
������A
 �� Calculate Measure ����� 
 ��� � for all �����	 �=� such that

������ Pa ����� �� Choose � 
@
������A
 � � ��� with highest ranking , where � 	9Pa � ��� � 9 .� Set � �?	 Pa ����� ��� ��� 
�
�������
 � � ���0�
Return � � �0�

Figure 2: Outline of the Restrict step

4 Choosing Candidate Sets

In this section we discuss possible measures for choosing
the candidate set.

To choose candidate parents for � � , we assign each � �
some measure of relevance to � � . As the candidate set of
� � , we choose those variables with the highest measure.
This general outline is shown in Figure 2. It is clear that in
some cases, such as XOR relations, pairwise scoring func-
tions are not enough to capture the dependency between
variables. However, for computational efficiency we limit
ourselves to this type of functions.

When considering each candidate, we essentially assume
that there are no spurious independencies in the data. More
precisely, if � is a parent of � , then � is not independent
(or “almost” independent) of � , given only a subset of the
other parents.

A simple and natural measure of dependence is mutual
information:

� ���
	 � � 	 L + P �
�7 �5� 
 � ��
����

�7 �5� 
�� ��7��&� � �7 � � �
Where

�7 denotes the observed frequencies in the dataset.
The mutual information is always non-negative. It is equal
to 0 when � and � are independent. The higher the mutual
information, the stronger the dependence between � and
� .

Researchers have tried to construct networks based on� � �
	 � � , i.e., add edges between variables with high mu-
tual information [9, 13, 22]. While in many cases mutual
information is a good first approximation of the candidate
parents, there are simple cases for which this measure fails.
Example 4.1 : Consider a network with 4 variables� 
 " 
 � , and E such that " � �

, � � �
, E � � .

We can easily select parameters for this network such that� � � 	 � ��� � � � 	�E ��� � � � 	�" � . Thus, if we select only

two parents based on mutual information, we would select
� and E . These two, however, are redundant since once
we know � , E adds no new information about

�
. More-

over, this choice does not take into account the effect of "
on
�

.
This example shows a general problem in pairwise selec-
tion, which our iterative algorithm overcomes. After we
select � and E as candidates, and the learning procedure
hopefully only sets � as a parent of

�
, we reestimate the

relevance of " and E to
�

. How can this be done with the
mutual information? We outline two possible approaches:

The first approach is based on an alternative definition of
the mutual information. We can define the mutual infor-
mation between � and � as the distance between the dis-
tribution

�7 ��� 
 � � and the distribution
�7 � � � �7 � � � , which

assumes � and � are independent:
� � ��	 � � 	8E������ �7 � � 
 � � 9 9 �7 � � � �7 ��� � �

where E ��� �&7 9 9 � � is the Kullback-Leibler divergence, de-
fined as:

E ��� �&7 ��� � 9 9 � � � � � 	 L 2 7 ��� ��
���� 7 ��� �
� ��� � �

Thus, the mutual information measures the error we in-
troduce if we assume that � and � are independent. If we
already have an estimate of a network " , we can use a sim-
ilar test to measure the discrepancy between our estimate7?> � � 
 � � and the empirical estimate

�7�� � 
 � � . We define

MeasureDisc ����� 
 � � 9 " � 	 E ��� � �7 ���=� 
 ��� � 9 9 7 > � ��� 
 ��� � �
Notice that when " 	 is an empty network, with parameters
estimated from the data, we get that MeasureDisc � � 
 � 9" 	 � 	 � � � J � � . Thus, our initial iteration in this case
uses mutual information to select candidates. Later itera-
tions use the discrepancy to find variables for which our
modeling of their joint empirical distribution is poor. In
our example, we would expect that 7 > � � 
 " � in the net-
work, when only � is a parent of

�
, is quite different

from
�7 � � 
 " � . Thus, " would measure highly relevant

to
�

, while 7?> � � 
 E � would be a good approximation of�7 � � 
 E � . Therefore, even “weak” parents have the oppor-
tunity to become candidates at some point.

One of the issues with this measure is that it requires
us to compute 7 > ����� 
 ��� � for pairs of variables. When
learning networks over large number of variables this can
be computationally expensive. However, we can easily ap-
proximate these probabilities by using a simple sampling
approach. Unlike computation of posterior probabilities
given evidence, the approximation of such prior probabil-
ities is not hard. We simply sample

N
instances from the

network, and from these we can estimate all pair-wise in-
teractions. (In our experiments we use

N 	 ������� .)
The second approach to extend the mutual information

score is based on the semantics of Bayesian networks.
Recall that in a Bayesian network ��� ’s parents shield it
from its non-descendants. This suggests that we measure



whether the conditional independence statement “ ��� is in-
dependent of ��� given Pa � ��� � ” holds. If it holds, then the
current parents separate � � from � � and � � is not a parent
of � � . On the other hand, if it does not hold, then either � �
is a parent of � � , or � � is a descendant of � � .

Instead of testing whether the conditional independence
statement holds or not, we estimate how strongly it is vio-
lated. The natural extension of mutual information for this
task, is the notion of conditional mutual information:
� � �
	 � 9 � � 	 ��� �7 � � � E���� � �7 ��� 
 � 9 � � 9 9

�7 � � 9 � � �7���� 9 � � � �
This measures the error we introduce by assuming that �
and � are independent given different values of � . We
define

MeasureShield ���=� 
 ��� 9 " � 	 � � ��� 	 � � 9Pa ����� � �
Once again, we have that if "
	 is the empty network, then
this measure is equivalent to

� � � � 	 � � � . Although shield-
ing can remove � ’s ancestors from the candidate set, it
does not “shield” � from its descendants.

A deficiency of both these measures is that they do not
take into account the cardinality of various variables. For
example if both � and � are possible candidate parents of
� , but � has two values (one bit of information), while� has eight values (three bits of information), we would
expect that � is less informative about � than � . On the
other hand, we can estimate 7 � � 9 � � more robustly than7 � � 9 � � since it involves fewer parameters.

Such considerations lead us to use scores which penalize
structures with more parameters, when searching the struc-
ture space, since the more complex the model is, the easier
we are misled by the empirical distribution. We use the
same considerations to design such a score for the Restrict
step.

To see how to define a measure of this form, we start by
reexamining the shielding property. Using the chain rule of
mutual information:
� � ��� 	 ��� 9Pa ����� � � 	 � � ��� 	 ��� 
 Pa ����� � � � � � ��� 	 Pa ����� � �
That is, the conditional mutual information is the additional
information we get by predicting ��� using ��� and Pa ����� � ,
compared to our prediction using Pa � ��� � . Since the term� � ��� 	 Pa � ��� � � does not depend on ��� , we don’t need to
compute it when we compare the information that different
��� ’s provide about ��� . Thus, an equivalent comparative
measure is

MeasureShield � ��� 
 ��� 9 " � 	 � ���=� 	 ��� 
 Pa � ��� � �
Now, if we consider the score of the Maximize step as
cautious approximation of the mutual information, with a
penalty on the number of parameters, we can get the score
measure;

MeasureScore � ��� 
 ��� 9 " � 	 Score ����� 	 ��� 
 Pa � ��� � 
 E � �
This simply measures the score when adding � � to the cur-
rent parents of ��� .

Calculating MeasureShield and MeasureScore is more ex-
pensive than calculating MeasureDisc. MeasureDisc only
needs the joint statistics for all pairs � � and � � . These
require only one pass over the data and the computation
can be cached for later iterations. The other measures re-
quire the joint statistics of � � , � � , and Pa � � � � . In general
Pa � � � � changes between iterations, and usually requires a
new pass over the data set each iteration. The cost of cal-
culating these new statistics can be reduced by limiting our
attention to variables ��� that have large enough mutual in-
formation with ��� . Note that this mutual information can
be computed using previously collected statistics

5 Learning with Small Candidate Sets

In this section we examine the problem of finding a con-
strained Bayesian network attaining a maximal score. We
first show why the introduction of candidate sets im-
proves the efficiency of standard heuristic techniques, such
as greedy hill-climbing. We then suggest an alternative
heuristic “divide and conquer” paradigm that exploits the
sparse structure of the constrained graph.

Formally, we attempt to solve the following problem:

Maximal Restricted Bayesian Network
(MRBN)
Input:
� A set E 	 � x 
 
������A
 x G � of instances� A digraph � of bounded in-degree �� A decomposable score

�
Output: A network " 	 $Q% 
:')( so that% % � , that maximizes S with respect to E .

As can be expected, this problem has a hard combinato-
rial aspect.
Proposition 5.1: MRBN is NP-hard.

This follows from a slight modification of the NP-hardness
of finding an optimal unconstrained Bayesian network [7].

5.1 Standard Heuristics

Though MRBN is NP-hard, even standard heuristics are
computationally more efficient and give a better approxi-
mation compared to the unconstrained problem. This is due
to the fact that the search space is substantially smaller, as is
the complexity of each iteration, and the number of counts
needed.

The search space of possible Bayesian networks is ex-
tremely large. By searching in a smaller space, we can
hope to have a better chance of finding a high-scoring net-
work. Although the search space size for MRBN remains
exponential, it is tiny in comparison to the space of all
Bayesian networks on the same domain. To see this, note
that even if we restrict the search to Bayesian networks with
at most � parents, there are ����� � ��� � possible parent sets for
each variable. On the other hand, in MRBN, we have only
��� � � � possible parent sets for each variable. (Of course,



the acyclicity constraints disallow many of these networks,
but it does not change the order of magnitude in the size of
the sets).

Examining the time complexity for each iteration in
heuristic searches also points in favor of MRBN. In greedy
hill climbing the score for the ��� � � � initial changes are
calculated, after which each iteration requires ����� � new
calculations. In MRBN we begin with ���Q� � � initial calcu-
lations after which each iteration only requires ��� � � calcu-
lation.

A large fraction of the learning time involves collecting
the sufficient statistics from the data. Here again, restricting
to candidate sets saves time. When � is reasonably small,
we can compute the statistics for � ���0� � � � in one pass over
the input. All the statistics we need for evaluating subsets
of � � as parents of ��� can then be computed by marginal-
ization from these counts. Thus, we can dramatically re-
duce the number of statistics collected from the data.

5.2 Divide and Conquer Heuristics

In this section we describe algorithms that utilize the com-
binatorial properties of the candidate graph � in order to
efficiently find the maximal scoring network, given the con-
straints. To simplify the following discussion, we abstract
the details of the Bayesian network learning problem and
focus on the underlying combinatorial problem. This prob-
lem is specified as follows:

Input: A digraph � 	 �	��� � ��� J ����� � � � , and a set
of weights � � � � 
�� � for each � � and � % � � .

Output: An acyclic subgraph
% % � that maximizes

����� %�� 	8L � � ��� � 
 Pa < ��� � � � �
One of the most effective paradigms for designing algo-

rithms is “Divide and Conquer”. In this particular prob-
lem, the global constraint we need to satisfy is acyclic-
ity. Otherwise, we would have selected, for each vari-
able � � , the parents that attain maximal weight. Thus, we
want to decompose the problem into components, so that
we can efficiently combine the maximal solutions on them.
We use standard graph decomposition methods to decom-
pose � . Once we have such a decomposition, we can find
acyclic solutions in each component and combine them into
a global solution.

5.3 Strongly Connected Components: (SCC)

The simplest decomposition of this form is one that disal-
lows cycles between components, i.e, strongly connected
components. A subset of nodes � is strongly connected
if for each � 
 � �	� , � contains a directed path from
� to � and a directed path from � to � . The set � is
maximal if there is no strongly connected superset of � . It
is clear that two maximal strongly connected components
must be disjoint, and there cannot be a cycle that involves
nodes in both of them (for otherwise their union would be a
strongly connected component). Thus, we can partition the

nodes in � into maximal strongly connected components� 
,
�������
 ��
 . Every cycle in � will be contained within
a single component. Thus, once we ensure acyclicity “lo-
cally” within each component, we get an acyclic solution
over all the variables. This means we can search for a max-
imum on each component independently.

To formalize this idea, we begin with some definitions.
Let � 
 
������ � 
 be a partition of �	� 
 
�������
 � � � . We define
the following subgraphs: � 2 - 	 � � � �=� 9 � ��� � � ,
� �F	
� 2 -�� ��� � 2 - . For

% ! � � , let
� ��� � %�� 	� 2 - � � � � � ��� 
 Pa < � ��� � � .

Proposition 5.2 : For � 
 
�������
 � 
 strongly connected
components of � , if for each � ,

% � ! � � is the acyclic
graph that maximizes

��� � � %�� then

� The graph
% 	 � � % � is acyclic.� % maximizes
� � � %��

.

Decomposing � into strongly connected components
takes linear time (e.g., see [11]), therefore we can apply this
decomposition, and search for the maxima on each compo-
nent separately. However, when the graph contains large
connected components, we still face a hard combinatorial
problem of finding the graphs

% � . For the remainder of
this section we will focus on further decomposition of such
components.

5.4 Separator Decomposition

We now decompose strongly connected graphs, therefore
we must consider cycles between the components. How-
ever, our goal is to find small “bottlenecks” through which
these cycles must go through. We then consider all possible
ways of breaking the cycles at these bottlenecks.
Definition 5.3: A separator of � is a set

�
of vertices so

that:

1. ��� � has two components � 
 and � � with no edges
between them.

2. For each ��� , � � � � � 
 � � so that � ��� � � � � % � �

The second property means that every family � � � � � � �
is fully contained within either � 
 or � � . This holds when�

“separates” the moralized graph of � , (where each fam-
ily appears as a clique), into two components. Thus, we
can search for the maximal choice of a variable’s parents in
only one component.

Unlike the SCC decomposition, however, this decompo-
sition does not allow us to maximize � for each ��� inde-
pendently. Suppose that we find two acyclic graphs

%

 and% � that maximize

� ��� � � and
� ��� � � , respectively. If the

combined graph
% 	 %



� % � is acyclic, then it must max-

imize
����� �

. Unfortunately,
%

might be cyclic. The first
property of separators ensures that the source of potential
conflicts between

%

 and

% � involve variables in the sepa-
rator

�
.

For � 
 � � �
, if there is a path from � to � in

%

and in addition there is a path from � to � in

% � , then



Separator-Algorithm

� for of each possible order � on
�

– For each � 	 � 

� , find
% � P � ! �=� , that maxi-

mizes
��� - � %�� among graphs that respect � .

– let
% � 	 %


 P � � % � P �� Return
% 	���� ��� �	� <�
 � � % � � .

Figure 3: Outline of using a separator to efficiently solve
MRBN

the combined graph will be cyclic. Conversely, it is also
easy to verify, that any cycle in

%
must involve at least two

variables in
�

.
This suggests a way of ensuring that the combined graph

will be acyclic. If we force some order on the variables in�
, and require both

%

 and

% � to respect this order, then
we disallow cycles. Formally, let � be a partial order on� � 
,
������A
 ����� . We say that a graph

%
respects � , if when-

ever there is a directed path ��� � ����� � ��� in
%

, then
��� �� � ��� .
Proposition 5.4: Let

�
be a separator in � and let � be a

partial order that completely orders all variables in
�

. Let%

 ! � 
 and

% � ! � � be two acyclic graphs that respect
� . Then,

% 	 %


� % � is acyclic.

Given
�

, a small separator in � , this suggests a simple
algorithm described in figure 3. This approach considers9 � 9�
 pairs of independent sub-problems. If the cost of find-
ing a solution to each of the sub-problems is smaller than
for the whole problem, and 9 � 9 is relatively small, this pro-
cedure can be more efficient.
Proposition 5.5 : Using the same notation as in the
separator-algorithm, if � � ,

% � maximizes
� � � �

among the
graphs that respect � then

% 	���� ��� ��� <�
 � � % � � maxi-
mizes

� � � �
.

5.5 Cluster-Tree Decomposition

In this section we present cluster trees, which are repre-
sentations of the candidate graphs, implying a recursive
separator decomposition of � into clusters. The idea is
similar to those of standard clique-tree algorithms used for
Bayesian network inference (e.g., [17]). We use this repre-
sentation to discuss a class of graphs for which � � � � can
be found in polynomial time.
Definition 5.6: A Cluster Tree of � is a pair ��� 
 � � , where� 	 ��� 
 � � is a tree and � 	 �	� �O9 � ��� � is a family of
clusters, subsets of � � 
,
�������
 �=�;� , one for each node of

�
,

so that:
� For each � � , there exists a cluster � � � � ��� such that�	� � � � � � % ��� 1 � 4 .� For all � 
�� 
 � ��� , if � is on the path from � to � in�

, then � ����� � ! � � . This is called the running
intersection property.

We introduce some notation: Let � � 
�� � be an edge in � .
Then

� � P � 	�� � �!� � is a separator in � , breaking it into
two subtrees

�

 and

� � . Define
� � to be the set of variables

assigned (with their parents) to � � : � � 	K�	� ��9 � � � � 	 � � .Define
� � � � � 	 � � ��" - � � . In contrast, define # � � � � to be

the set of variables appearing in
� � , not necessarily with

their parents.
Whenever 9 � � P � 9 is small and 9 � 
 9�$ 9 � � 9 , then

� � P � can be
efficiently used in algorithm 3. We now devise a dynamic
programming algorithm for computing the optimal graph
using the cluster tree separators. First, let us root the cluster
tree at an arbitrary � 	 �%� , inducing an order on the tree
nodes. Each cluster � �"�&� is the root of a subtree

� � ,
spanning away from � 	 . � � is the tree separator, separating� � from the rest of � . The sub-nodes of � � are its neighbors
in � � .

Define for each cluster � � and each total order � on
� �

the weight
� � � � 
 � � of the maximal partial solution which

respects �
� � �'� 
 � � 	 � ���

acyclic
% ! � � � ' �

respecting �

� ��( " ��) � %�� � (1)

The crux of the algorithm is that finding these weights
can be done in a recursive manner, based on previously
computed maxima.
Proposition 5.7: For each cluster � � �*� and order �
over

� � : Let � 
,
�������
 � � be the sub-nodes of � � . Then� � �'� 
 � � is equal to

� �	���+ � � ���
acyclic

% ! � � � � �
respecting �-,

� � � � %�� +
�
L �3C 

� � � � 
 � , 9 ' - � �

(2)
where �-, ranges on all orders on � � that are consistent with
� , ,and � , 9 ' - is the restriction of � , to an order over

� � .
Equation 2 allows rapid evaluation of all the tables� � � 
 � � in one phase, working our way from the leaves

inwards towards � 	 . At the end of this traversal, we have
computed the weight of each ordering on all separators ad-
jacent to the root cluster � 	 . A second phase then traverses� from the root outwards, in order to back-trace the choices
made during the first phase, leading to the maximum total
weight

����� %��
.

Examining the complexity of this algorithm, we see that
each cluster � � is visited twice, the first (more expensive)
visit requiring ��� 9 � � 9.
0/ 9 � � 91/ � � � operations, where � is
the size of the candidate sets. Thus, we get the following
result:
Theorem 5.8: If 2 is the size of the largest separator in the
cluster tree, then finding

%
that maximizes

� � %��
can be

done in ��� �
� / �32 +�� � 
4/ 9 � 9 � .

In summary, the algorithm is linear in the size of the clus-
ter tree but worse than exponential in the size of the largest
separator in the tree.



The discussion until now assumed a fixed cluster tree. In
practice we also need to select the cluster tree. This is a
well-known and hard problem that is beyond the scope of
this paper. However, we note that if there is a small cluster
tree, then it can be found in polynomial time [3].

5.6 Cluster-Tree Heuristics

Although the algorithm of the previous section is linear in
the number of clusters, it is worse than exponential in the
size of the largest cluster. Thus, in many situations we ex-
pect it to be hopelessly intractable. Nonetheless, this al-
gorithm provides some intuition on how to decompose the
heuristic search for our problem.

The key idea is that although after computing a cluster
tree, many of the clusters might be large, we can use a mix-
ture of the exact algorithm on small clusters and heuristic
searches such as greedy hill climbing on the larger clusters.
Due to space constraints, we only briefly outline the main
ideas of this approach.

When � � is sufficiently small, we can efficiently store
the tables � � � � 
 � � used by the exact cluster tree algo-
rithm. However, if the clusters are large, then we cannot
do the maximization of ( 2). Instead, we perform a heuris-
tic search, such as greedy hill-climbing, over the space of
parents for variables in

� � to find a partial network that is
consistent with the ordering induced by the current assign-
ment.

By proceeding in this manner, we approximate the exact
algorithm. This approximation examines a series of small
search spaces, that are presumably easier to deal with than
the original search space. This approach can be easily ex-
tended to deal with cluster trees in which only some of the
separators are small.

6 Experimental Evaluation

In this section we illustrate the effectiveness of the sparse
candidate algorithm. We examine both a synthetic exam-
ple and a real-life dataset. Our current experiments are de-
signed to evaluate the effectiveness of the general scheme
and to show the utility of various measures for selecting
candidates in the Restrict phase. In the experiments de-
scribed here we use greedy hill-climbing for the Maximize
phase. We are currently working on implementation of the
heuristic algorithms described in Section 5, and we hope
to report results. Some statistics about strongly connected
component sizes are reported.

6.1 Methodology

The basic heuristic search procedure we use is a greedy
hill-climbing that considers local moves in the form of edge
addition, edge deletion, and edge reversal. At each itera-
tion, the procedure examines the change in the score for
each possible move, and applies the one that leads to the
biggest improvement. These iterations are repeated until
convergence. In order to escape local maxima, the proce-
dure is augmented with a simple version of TABU search.
It keeps a list of the

N
last candidates seen, and instead

of applying the best local change, it applies the best local

Method Iter Time Score KL Stats
Greedy 40 -15.35 0.0499 2656
Disc 5 1 14 -18.41 3.0608 908

2 19 -16.71 1.3634 1063
3 23 -16.21 0.8704 1183

Disc 10 1 20 -15.53 0.2398 1235
2 26 -15.43 0.1481 1512
3 32 -15.43 0.1481 1733

Shld 5 1 14 -17.50 2.1675 915
2 29 -17.25 1.8905 1728
3 36 -16.92 1.5632 1907

Shld 10 1 20 -15.86 0.5357 1244
2 35 -15.50 0.1989 1968
3 41 -15.50 0.1974 2109

Score 5 1 12 -15.94 0.6756 893
2 27 -15.34 0.0550 1838
3 34 -15.33 0.0479 2206

Score 10 1 17 -15.54 0.2559 1169
2 30 -15.31 0.0352 1917
3 34 -15.31 0.0352 2058

Table 1: Summary of results on synthetic data from alarm
domain. These results report the quality of the network,
measured both in terms of the score (BDe score divided by
number of instances), and KL divergence to the generat-
ing distribution. The other columns measure performance
both in terms of execution time (seconds) and the number
of statistics collected from the data. The methods reported
are Disc – discrepancy measure, Shld – shielding measure,
and Score – score based measure.

change that results in a structure not on the list. Note that
because of the TABU list, the best allowed change might
actually reduce the score of the current candidate. We ter-
minate the procedure after some fixed number of changes
failed to result in an improvement over the best score seen
so far. After termination, the procedure returns the best
scoring structure it encountered.

In the reported experiments we use this greedy hill-
climbing procedure both for the Maximize phase of the
sparse candidate algorithm, and as a search procedure by
itself. In the former case, the only local changes that are
considered are those allowed by the current choice of can-
didates. In the latter case, the procedure considers all pos-
sible local changes. This latter case serves as a reference
point against which we compare our results. In the ex-
panded version of this paper, we will also compare to other
search procedures.

To compare these search procedures we need to measure
both their performance in the task at hand, and their com-
putational cost.

The evaluation of quality is based on the score assigned
to the network found by each algorithm. In addition, for
synthetic data , we can also measure the true error with
respect to the generating distribution. This allows us to
assess the significance of the differences between the scores
during the search.

Evaluating the computational cost is more complicated.
The simplest approach is to measure running time. We re-
port running times on an unloaded Pentium II 300mhz ma-
chines running Linux. These running times, however, de-
pend on various coding issues in our implementation. We
attempted to avoid introducing bias within our code for ei-
ther procedure, by using the same basic library for evaluat-
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Figure 4: Graphs showing the performance of the different algorithms on the text domains. The graphs on the top row
show plots of score ( � -axis) vs. running time ( � -axis). The graphs on the bottom row show the same run measured in
terms of score ( � -axis) vs. number of statistics computed ( � -axis). The reported methods vary in terms of the candidate
selection measure (Disc – discrepancy measure, Shld – shielding measure, Score – score based measure) and the size of
the candidate set (k = 10 or 15). The points on each curve for the sparse candidate algorithm are the end result of an
iteration. The points on the curves for greedy hill-climbing are the intermediate steps in the hill-climb.

ing the score of candidates and for computing and caching
of sufficient statistics. Moreover, the actual search is car-
ried by the same code for greedy-hill climbing procedure.

As additional indication of computational cost, we also
measured the number of sufficient statistics computed from
the data. In massive datasets these computations can be
the most significant portion of the running time. To min-
imize the number of passes over the data we use a cache
that allows us to use previously computed statistics, and to
marginalize statistics to get the statistics of subsets. We
report the number of actual statistics that were computed
from the data.

Finally, in all of our experiments we used the BDe score
of [16] with a uniform prior with equivalent sample size of
ten. This choice is a fairly unformed prior that does not
code initial bias toward the correct network. The strength
of the equivalent sample size was set prior to the experi-
ments and was not tuned.

6.2 Synthetic Data

In the first set of experiments we used a sample of 10000
instances from the “alarm” network [2]. This network has
been used for studies of structure learning in various pa-

pers, and is treated as a common benchmark in the field.
This network contains 37 variables, of which 13 have 2 val-
ues, 22 have 3 values, and 2 have 4 values.

We note that although we do not consider this data set
particularly massive, it does allow us to estimate the be-
havior of our search procedure. In the future we plan to use
synthetic data from larger networks.

The results for this small data set are reported in Table 6.
In this table we measure both the score of the networks
found and their error with respect to generating distribu-
tions.

The results on this toy domain show that our algorithm,
in particular with the Score selection heuristic, finds net-
works with comparable score to the one found by greedy
hill climbing. Although the timing results for this small
scale experiments are not too significant, we do see that the
sparse candidate algorithm usually requires fewer statistics
records.

Finally, we note that the first iteration of the algo-
rithm finds reasonably high scoring networks. Nonethe-
less, subsequent iterations improve the score. Thus, the re-
estimation of candidate sets based on our score does lead
to important improvements.



For the next set of experiments, we used gene expres-
sion data from [1]. The data describes expression level of
800 cell-cycle regulated genes, over 76 experiments. We
learned a network from this dataset, and then sampled 5000
instances from the learned network. We then used this syn-
thetic dataset.

The results are reported in figure 4. In these experiments,
the greedy hill-climbing search stopped before it reached a
maximum, for lack of memory. However, if we try to assess
the time it would run until reaching a comparable score to
the other searches, it seems at least 3 times slower, even by
conservative extrapolation. We also note that the discrep-
ancy measure has a slower learning curve than the score
measure. Note that after the first iteration, where the ini-
tial O( � � ) statistics are collected, each iteration adds only
a modest number of new statistics, since we only calculate
the measure for pairs of variables initially had a significant
mutual information.

6.3 Real-Life Data

To test our learning algorithms on more challenging do-
mains we examined data from text. We used the data
set that contains messages from 20 newsgroups (approxi-
mately 1000 from each) [18]. We represent each message
as a vector containing one attribute for the newsgroup and
attributes for each word in the vocabulary. We constructed
data sets with different numbers of attributes by focusing
on subsets of the vocabulary. We did this by removing
common stop words, and then sorting words based on their
frequency in the whole data set. The data sets included the
group designator and the 99 (text 100 set) or 199 (text 200
set) most common words. We trained on 10,000 messages
that were randomly selected from the total data set.

The results of these experiments are reported in figure 4.
As we can see, in the case of 100 attributes, by using the
Score selection method with candidate sets of sizes 10 or
15, we can learn networks that are reasonably close to the
one found by greedy hill-climbing in about half the running
time and half the number of sufficient statistics. When we
have 200 attributes, the speedup is larger than 3. We ex-
pect that as we consider data sets with larger number of
attributes, this speedup ratio will grow.

7 Conclusion

The contributions of this paper are two fold.
First, we proposed a simple heuristic for improving

search efficiency. By restricting our search to examine only
a small number of candidate parents for each variable, we
can find high-scoring networks efficiently. Furthermore,
we showed that we can improve the choice of the candi-
dates by taking into account the network we learned, thus
getting higher scoring networks . We demonstrated both
of these effects in our experimental section. These results
show that our procedure can lead to dramatic reduction in
the learning time with a small loss of quality.

In [5], the sparse candidate method was combined with
the structural EM procedure for learning structure from in-
complete data. In that setup, the cost of finding statistics

is much higher, since instead of counting number of in-
stances, we have to perform inference for each of the in-
stances. As a consequence the reduction in the number of
requested statistics (as shown in our results) leads to signif-
icant saving in running time. Similar cost issues occur in
[14], where a variant of our algorithm is used for learning
probabilistic models from relational databases.

Second, we showed that by restricting each variable to
a small group of candidate parents, we can sometimes get
theoretical guarantees on the complexity of the learning al-
gorithm. This result is of theoretical interest: to the best of
our knowledge, this is the first non-trivial case for which
one can find a polynomial time learning algorithm for net-
works with in-degree greater than one. This theoretical
argument might also have practical ramifications. As we
showed, even if the exact polynomial algorithm is too ex-
pensive, we can use it as a guide for finding good approxi-
mate solutions. We are in the process of implementing this
new heuristic strategy and evaluating it.

There are several directions for future research. Our ul-
timate aim is to use this type of algorithm for learning in
domains with thousands of attributes. In such domains the
cost of the Restrict step of our algorithm is prohibitive
(since it is quadratic in the number of variables). We are
currently examining heuristic approximations for this step
that will find approximations for the best candidates. Once
we learn a network based on these candidates, we can use
it to help focus on other variables that should be examined
in the next Restrict step. Another direction of interest is
the combination of our methods with other recent ideas for
efficient learning from large datasets, such as [20].
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